Theorem

-------

 

ALL(a):[a e u => P(a)] & EXIST(b):Q(b)

<=> ALL(a):[a e u => EXIST(b):[P(a) & Q(b)]]

 

where u is a non-empty set.

 

By Dan Christensen

http://www.dcproof.com

 

 

Axiom

-----

 

Let u be a non-empty set, the domain of quantification here.

 

1     EXIST(a):a e u

      Axiom

 

    

     Proof

     -----

    

     '=>'

    

     Prove: ALL(a):[a e u => P(a)] & EXIST(b):Q(b)

            => ALL(a):[a e u => EXIST(b):[P(a) & Q(b)]]

    

     Suppose...

 

      2     ALL(a):[a e u => P(a)] & EXIST(b):Q(b)

            Premise

 

     Splitting this premise...

 

      3     ALL(a):[a e u => P(a)]

            Split, 2

 

      4     EXIST(b):Q(b)

            Split, 2

 

          Prove: ALL(a):[a e u => EXIST(b):[P(a) & Q(b)]]

         

          Suppose...

 

            5     x e u

                  Premise

 

          Apply premise

 

            6     x e u => P(x)

                  U Spec, 3

 

            7     P(x)

                  Detach, 6, 5

 

          Let y be such that...

 

            8     Q(y)

                  E Spec, 4

 

          Joining results...

 

            9     P(x) & Q(y)

                  Join, 7, 8

 

          Apply existential generalization on y

 

            10    EXIST(b):[P(x) & Q(b)]

                  E Gen, 9

 

     As Required:

 

      11    ALL(a):[a e u => EXIST(b):[P(a) & Q(b)]]

            4 Conclusion, 5

 

As Required:

 

12    ALL(a):[a e u => P(a)] & EXIST(b):Q(b)

     => ALL(a):[a e u => EXIST(b):[P(a) & Q(b)]]

      4 Conclusion, 2

 

     '<='

    

     Prove: ALL(a):[a e u => EXIST(b):[P(a) & Q(b)]]

            => ALL(a):[a e u => P(a)] & EXIST(b):Q(b)

    

     Suppose...

 

      13    ALL(a):[a e u => EXIST(b):[P(a) & Q(b)]]

            Premise

 

          Prove: ALL(a):[a e u => P(a)]

         

          Suppose...

 

            14    v e u

                  Premise

 

          Apply premise

 

            15    v e u => EXIST(b):[P(v) & Q(b)]

                  U Spec, 13

 

            16    EXIST(b):[P(v) & Q(b)]

                  Detach, 15, 14

 

            17    P(v) & Q(w)

                  E Spec, 16

 

            18    P(v)

                  Split, 17

 

     As Required:

 

      19    ALL(a):[a e u => P(a)]

            4 Conclusion, 14

 

     Prove: EXIST(b):Q(b)

    

     Apply axiom

 

      20    z e u

            E Spec, 1

 

     Apply premise

 

      21    z e u => EXIST(b):[P(z) & Q(b)]

            U Spec, 13

 

      22    EXIST(b):[P(z) & Q(b)]

            Detach, 21, 20

 

      23    P(z) & Q(t)

            E Spec, 22

 

      24    P(z)

            Split, 23

 

      25    Q(t)

            Split, 23

 

     Apply existential generalization

    

     As Required:

 

      26    EXIST(b):Q(b)

            E Gen, 25

 

     Joining results...

 

      27    ALL(a):[a e u => P(a)] & EXIST(b):Q(b)

            Join, 19, 26

 

As Required:

 

28    ALL(a):[a e u => EXIST(b):[P(a) & Q(b)]]

     => ALL(a):[a e u => P(a)] & EXIST(b):Q(b)

      4 Conclusion, 13

 

Joining results...

 

29    [ALL(a):[a e u => P(a)] & EXIST(b):Q(b)

     => ALL(a):[a e u => EXIST(b):[P(a) & Q(b)]]]

     & [ALL(a):[a e u => EXIST(b):[P(a) & Q(b)]]

     => ALL(a):[a e u => P(a)] & EXIST(b):Q(b)]

      Join, 12, 28

 

As Required:

 

30    ALL(a):[a e u => P(a)] & EXIST(b):Q(b)

     <=> ALL(a):[a e u => EXIST(b):[P(a) & Q(b)]]

      Iff-And, 29