THEOREM 6 (LEMMA)

*****************

 

ALL(a):ALL(b):[aen & ben  => [~a=0 => ~a^b=0]]

 

By Dan Christensen

October 2013 

 

(This proof was prepared with the aid of the author's DC Proof software available at http://www.dcproof.com )

 

 

BASIC PRINCIPLES OF ARITHMETIC USED

***********************************

 

n is a set (the set of natural numbers)

 

1     Set(n)

      Axiom

 

+ is a binary function on n

 

2     ALL(a):ALL(b):[a e n & b e n => a+b e n]

      Axiom

 

* is a binary function on n

 

3     ALL(a):ALL(b):[a e n & b e n => a*b e n]

      Axiom

 

4     0 e n

      Axiom

 

5     1 e n

      Axiom

 

6     ~0=1

      Axiom

 

7     ALL(a):[a e n => a+0=a]

      Axiom

 

8     ALL(a):[a e n => a*0=0]

      Axiom

 

9     ALL(a):[a e n => a*1=a]

      Axiom

 

The principle of mathematical induction (PMI)

 

10    ALL(a):[Set(a) & ALL(b):[b e a => b e n]

     => [0 e a & ALL(b):[b e a => b+1 e a]

     => ALL(b):[b e n => b e a]]]

      Axiom

 

Zero product rule

 

11    ALL(a):ALL(b):[a e n & b e n => [a*b=0 => a=0 | b=0]]

      Axiom

 

 

Define: ^  (0^0 is an uspecified natural number)

*********

 

12    ALL(a):ALL(b):[a e n & b e n => a^b e n]

     & ALL(a):[a e n => [~a=0 => a^0=1]]

     & ALL(a):ALL(b):[a e n & b e n => a^(b+1)=a^b*a]

      Premise

 

13    ALL(a):ALL(b):[a e n & b e n => a^b e n]

      Split, 12

 

14    ALL(a):[a e n => [~a=0 => a^0=1]]

      Split, 12

 

15    ALL(a):ALL(b):[a e n & b e n => a^(b+1)=a^b*a]

      Split, 12

 

    

     Prove: ALL(a):[a e n => [~a=0 => ALL(b):[b e n => ~a^b=0]]]

    

     Suppose...

 

      16    x e n

            Premise

 

         

          Prove: ~x=0 => ALL(b):[b e n => ~x^b=0]

         

          Suppose...

 

            17    ~x=0

                  Premise

 

          Apply Subset Axiom for proof by induction

 

            18    EXIST(sub):[Set(sub) & ALL(b):[b e sub <=> b e n & ~x^b=0]]

                  Subset, 1

 

            19    Set(p) & ALL(b):[b e p <=> b e n & ~x^b=0]

                  E Spec, 18

 

         

          Define: p

 

            20    Set(p)

                  Split, 19

 

            21    ALL(b):[b e p <=> b e n & ~x^b=0]

                  Split, 19

 

          Apply PMI

 

            22    Set(p) & ALL(b):[b e p => b e n]

              => [0 e p & ALL(b):[b e p => b+1 e p]

              => ALL(b):[b e n => b e p]]

                  U Spec, 10

 

             

              Prove: ALL(b):[b e p => b e n]

             

              Suppose...

 

                  23    t e p

                        Premise

 

              Apply definition of p

 

                  24    t e p <=> t e n & ~x^t=0

                        U Spec, 21

 

                  25    [t e p => t e n & ~x^t=0] & [t e n & ~x^t=0 => t e p]

                        Iff-And, 24

 

                  26    t e p => t e n & ~x^t=0

                        Split, 25

 

                  27    t e n & ~x^t=0 => t e p

                        Split, 25

 

                  28    t e n & ~x^t=0

                        Detach, 26, 23

 

                  29    t e n

                        Split, 28

 

          As Required:

 

            30    ALL(b):[b e p => b e n]

                  4 Conclusion, 23

 

            31    Set(p) & ALL(b):[b e p => b e n]

                  Join, 20, 30

 

         

          Sufficient: ALL(b):[b e n => b e p]

 

            32    0 e p & ALL(b):[b e p => b+1 e p]

              => ALL(b):[b e n => b e p]

                  Detach, 22, 31

 

         

          Prove: 0 e p

         

          Apply definition of p

 

            33    0 e p <=> 0 e n & ~x^0=0

                  U Spec, 21

 

            34    [0 e p => 0 e n & ~x^0=0] & [0 e n & ~x^0=0 => 0 e p]

                  Iff-And, 33

 

            35    0 e p => 0 e n & ~x^0=0

                  Split, 34

 

          Sufficient: 0 e p

 

            36    0 e n & ~x^0=0 => 0 e p

                  Split, 34

 

          Apply definition of ^

 

            37    x e n => [~x=0 => x^0=1]

                  U Spec, 14

 

            38    ~x=0 => x^0=1

                  Detach, 37, 16

 

            39    x^0=1

                  Detach, 38, 17

 

            40    ~0=x^0

                  Substitute, 39, 6

 

            41    ~x^0=0

                  Sym, 40

 

            42    0 e n & ~x^0=0

                  Join, 4, 41

 

          As Required:

 

            43    0 e p

                  Detach, 36, 42

 

             

              Prove: ALL(b):[b e p => b+1 e p]

             

              Suppose...

 

                  44    t e p

                        Premise

 

              Apply definition of p

 

                  45    t e p <=> t e n & ~x^t=0

                        U Spec, 21

 

                  46    [t e p => t e n & ~x^t=0] & [t e n & ~x^t=0 => t e p]

                        Iff-And, 45

 

                  47    t e p => t e n & ~x^t=0

                        Split, 46

 

                  48    t e n & ~x^t=0 => t e p

                        Split, 46

 

                  49    t e n & ~x^t=0

                        Detach, 47, 44

 

                  50    t e n

                        Split, 49

 

                  51    ~x^t=0

                        Split, 49

 

              Apply definition of p

 

                  52    t+1 e p <=> t+1 e n & ~x^(t+1)=0

                        U Spec, 21

 

                  53    [t+1 e p => t+1 e n & ~x^(t+1)=0]

                   & [t+1 e n & ~x^(t+1)=0 => t+1 e p]

                        Iff-And, 52

 

                  54    t+1 e p => t+1 e n & ~x^(t+1)=0

                        Split, 53

 

              Sufficient: t+1 e p

 

                  55    t+1 e n & ~x^(t+1)=0 => t+1 e p

                        Split, 53

 

                  56    ALL(b):[t e n & b e n => t+b e n]

                        U Spec, 2

 

                  57    t e n & 1 e n => t+1 e n

                        U Spec, 56

 

                  58    t e n & 1 e n

                        Join, 50, 5

 

                  59    t+1 e n

                        Detach, 57, 58

 

              Apply definition of ^

 

                  60    ALL(b):[x e n & b e n => x^(b+1)=x^b*x]

                        U Spec, 15

 

                  61    x e n & t e n => x^(t+1)=x^t*x

                        U Spec, 60

 

                  62    x e n & t e n

                        Join, 16, 50

 

                  63    x^(t+1)=x^t*x

                        Detach, 61, 62

 

                  64    ALL(b):[x^t e n & b e n => [x^t*b=0 => x^t=0 | b=0]]

                        U Spec, 11

 

                  65    x^t e n & x e n => [x^t*x=0 => x^t=0 | x=0]

                        U Spec, 64

 

                  66    ALL(b):[x e n & b e n => x^b e n]

                        U Spec, 13

 

                  67    x e n & t e n => x^t e n

                        U Spec, 66

 

                  68    x^t e n

                        Detach, 67, 62

 

                  69    x^t e n & x e n

                        Join, 68, 16

 

                  70    x^t*x=0 => x^t=0 | x=0

                        Detach, 65, 69

 

                  71    ~[x^t=0 | x=0] => ~x^t*x=0

                        Contra, 70

 

                  72    ~~[~x^t=0 & ~x=0] => ~x^t*x=0

                        DeMorgan, 71

 

                  73    ~x^t=0 & ~x=0 => ~x^t*x=0

                        Rem DNeg, 72

 

                  74    ~x^t=0 & ~x=0

                        Join, 51, 17

 

                  75    ~x^t*x=0

                        Detach, 73, 74

 

                  76    ~x^(t+1)=0

                        Substitute, 63, 75

 

                  77    t+1 e n & ~x^(t+1)=0

                        Join, 59, 76

 

                  78    t+1 e p

                        Detach, 55, 77

 

          As Required:

 

            79    ALL(b):[b e p => b+1 e p]

                  4 Conclusion, 44

 

            80    0 e p & ALL(b):[b e p => b+1 e p]

                  Join, 43, 79

 

          As Required:

 

            81    ALL(b):[b e n => b e p]

                  Detach, 32, 80

 

             

              Prove: ALL(b):[b e n => ~x^b=0]

             

              Suppose...

 

                  82    t e n

                        Premise

 

                  83    t e n => t e p

                        U Spec, 81

 

                  84    t e p

                        Detach, 83, 82

 

                  85    t e p <=> t e n & ~x^t=0

                        U Spec, 21

 

                  86    [t e p => t e n & ~x^t=0] & [t e n & ~x^t=0 => t e p]

                        Iff-And, 85

 

                  87    t e p => t e n & ~x^t=0

                        Split, 86

 

                  88    t e n & ~x^t=0 => t e p

                        Split, 86

 

                  89    t e n & ~x^t=0

                        Detach, 87, 84

 

                  90    t e n

                        Split, 89

 

                  91    ~x^t=0

                        Split, 89

 

          As Required:

 

            92    ALL(b):[b e n => ~x^b=0]

                  4 Conclusion, 82

 

     As Required:

 

      93    ~x=0 => ALL(b):[b e n => ~x^b=0]

            4 Conclusion, 17

 

As Required:

 

94    ALL(a):[a e n => [~a=0 => ALL(b):[b e n => ~a^b=0]]]

      4 Conclusion, 16

 

    

     Prove: ALL(a):ALL(b):[a e n & b e n => [~a=0 => ~a^b=0]]

    

     Suppose...

 

      95    x e n & y e n

            Premise

 

      96    x e n

            Split, 95

 

      97    y e n

            Split, 95

 

         

          Prove: ~x=0 => ~x^y=0

         

          Suppose...

 

            98    ~x=0

                  Premise

 

            99    x e n => [~x=0 => ALL(b):[b e n => ~x^b=0]]

                  U Spec, 94

 

            100  ~x=0 => ALL(b):[b e n => ~x^b=0]

                  Detach, 99, 96

 

            101  ALL(b):[b e n => ~x^b=0]

                  Detach, 100, 98

 

            102  y e n => ~x^y=0

                  U Spec, 101

 

            103  ~x^y=0

                  Detach, 102, 97

 

      104  ~x=0 => ~x^y=0

            4 Conclusion, 98

 

As Required:

 

105  ALL(a):ALL(b):[a e n & b e n => [~a=0 => ~a^b=0]]

      4 Conclusion, 95