The Transitivity of Equality Theorem: ALL(a):ALL(b):ALL(c):[a=b & b=c => a=c] Proof: Suppose... 1 x=y & y=z Premise Splitting the above premise... 2 x=y Split, 1 3 y=z Split, 1 Substituting... 4 x=z Substitute, 2, 3 Applying the Conclusion Rule, we automatically generalize on x, y and z using bound variables a, b and c respectively. (User choses only the names of bound variables.) 5 ALL(a):ALL(b):ALL(c):[a=b & b=c => a=c] Conclusion, 1