Definition of the set of natural numbers proposed by WM:
ALL(a):[a e n <=> ALL(b):[1 e b & ALL(c):[c e b => c+1 e b] => a e b]]
Unfortunately, this definition is satisfied by the conditions, 1+1=1 and n = {1}
(This proof was written with the aid of the author's DC Proof 2.0 software available free at http://www.dcproof.com )
Axioms
******
1 1+1=1
Axiom
2 ALL(a):[a e n <=> a=1]
Axiom
'=>'
Prove: ALL(a):[a e n
=> ALL(b):[1 e b & ALL(c):[c e b => c+1 e b] => a e b]]
Suppose...
3 x e n
Premise
Apply definition of n
4 x e n <=> x=1
U Spec, 2
5 [x e n => x=1] & [x=1 => x e n]
Iff-And, 4
6 x e n => x=1
Split, 5
7 x=1 => x e n
Split, 5
8 x=1
Detach, 6, 3
Prove: ALL(b):[1 e b & ALL(c):[c e b => c+1 e b] => x e b]
Suppose...
9 1 e p & ALL(c):[c e p => c+1 e p]
Premise
10 1 e p
Split, 9
11 ALL(c):[c e p => c+1 e p]
Split, 9
12 x e p
Substitute, 8, 10
As Required:
13 ALL(b):[1 e b & ALL(c):[c e b => c+1 e b] => x e b]
4 Conclusion, 9
As Required:
14 ALL(a):[a e n
=> ALL(b):[1 e b & ALL(c):[c e b => c+1 e b] => a e b]]
4 Conclusion, 3
'<='
Prove: ALL(a):[ALL(b):[1 e b & ALL(c):[c e b => c+1 e b] => a e b]
=> a e n]
Suppose...
15 ALL(b):[1 e b & ALL(c):[c e b => c+1 e b] => x e b]
Premise
Apply definition of n
16 x e n <=> x=1
U Spec, 2
17 [x e n => x=1] & [x=1 => x e n]
Iff-And, 16
18 x e n => x=1
Split, 17
19 x=1 => x e n
Split, 17
Apply premise
20 1 e n & ALL(c):[c e n => c+1 e n] => x e n
U Spec, 15
21 1 e n <=> 1=1
U Spec, 2
22 [1 e n => 1=1] & [1=1 => 1 e n]
Iff-And, 21
23 1 e n => 1=1
Split, 22
24 1=1 => 1 e n
Split, 22
25 1=1
Reflex
26 1 e n
Detach, 24, 25
Prove: ALL(c):[c e n => c+1 e n]
Suppose...
27 y e n
Premise
Apply definition of n
28 y e n <=> y=1
U Spec, 2
29 [y e n => y=1] & [y=1 => y e n]
Iff-And, 28
30 y e n => y=1
Split, 29
31 y=1 => y e n
Split, 29
32 y=1
Detach, 30, 27
33 y=1+1
Substitute, 1, 32
34 y=y+1
Substitute, 32, 33
35 y+1 e n
Substitute, 34, 27
As Required:
36 ALL(c):[c e n => c+1 e n]
4 Conclusion, 27
37 1 e n & ALL(c):[c e n => c+1 e n]
Join, 26, 36
38 x e n
Detach, 20, 37
As Required:
39 ALL(a):[ALL(b):[1 e b & ALL(c):[c e b => c+1 e b] => a e b]
=> a e n]
4 Conclusion, 15
Combining results...
40 ALL(a):[[a e n
=> ALL(b):[1 e b & ALL(c):[c e b => c+1 e b] => a e b]] & [ALL(b):[1 e b & ALL(c):[c e b => c+1 e b] => a e b]
=> a e n]]
Join, 14, 39
As Required:
41 ALL(a):[a e n
<=> ALL(b):[1 e b & ALL(c):[c e b => c+1 e b] => a e b]]
Iff-And, 40