LEMMA 1
*******
Here we construct an
exponentiation function exp using an arbitrary value x0 for exp(0,0).
ALL(x0):[x0 e n
=> EXIST(exp):[ALL(a):ALL(b):[a e n & b e n =>
exp(a,b) e n]
& exp(0,0)=x0
& ALL(a):[a e n => [~a=0 => exp(a,0)=1]]
& ALL(a):ALL(b):[a e n & b e n =>
exp(a,b+1)=exp(a,b)*a]]]
This formal, machine-verified
proof was written with the aid of the author's DC Proof 2.0 freeware available
at http://www.dcproof.com
AXIOMS USED
***********
Function Axiom (2 variables)
1 ALL(f):ALL(a1):ALL(a2):ALL(b):[Set''(f) & Set(a1) &
Set(a2) & Set(b)
=>
[ALL(c1):ALL(c2):ALL(d):[(c1,c2,d) e f => c1 e a1 & c2 e a2 & d e b]
&
ALL(c1):ALL(c2):[c1 e a1 & c2 e a2 => EXIST(d):[d e b &
(c1,c2,d) e f]]
&
ALL(c1):ALL(c2):ALL(d1):ALL(d2):[(c1,c2,d1) e f &
(c1,c2,d2) e f => d1=d2]
=>
ALL(c1):ALL(c2):ALL(d):[c1 e a1 & c2 e a2 & d e b => [d=f(c1,c2) <=> (c1,c2,d) e f]]]]
Axiom
2 Set(n)
Axiom
3 0 e n
Axiom
4 ALL(a):ALL(b):[a e n & b e n => [a+1=b+1 => a=b]]
Axiom
5 ALL(a):[a e n => ~a+1=0]
Axiom
6 ALL(a):[Set(a) & ALL(b):[b e a => b e n]
=>
[0 e a & ALL(b):[b e a => b+1 e a]
=>
ALL(b):[b e n => b e a]]]
Axiom
7 1 e n
Axiom
8 2 e n
Axiom
9 ALL(a):ALL(b):[a e n & b e n => a+b e n]
Axiom
10 ALL(a):ALL(b):[a e n & b e n => a*b e n]
Axiom
PROOF
*****
Suppose...
11 x0 e n
Premise
Apply Cartesian Product Axiom
12 ALL(a1):ALL(a2):ALL(a3):[Set(a1) & Set(a2) & Set(a3) =>
EXIST(b):[Set''(b) & ALL(c1):ALL(c2):ALL(c3):[(c1,c2,c3) e b <=> c1 e a1 & c2 e a2 & c3 e a3]]]
Cart Prod
13 ALL(a2):ALL(a3):[Set(n) & Set(a2) & Set(a3) => EXIST(b):[Set''(b)
& ALL(c1):ALL(c2):ALL(c3):[(c1,c2,c3) e b <=> c1 e n & c2 e a2 & c3 e a3]]]
U Spec, 12
14 ALL(a3):[Set(n) & Set(n) & Set(a3) => EXIST(b):[Set''(b)
& ALL(c1):ALL(c2):ALL(c3):[(c1,c2,c3) e b <=> c1 e n & c2 e n & c3 e a3]]]
U Spec, 13
15 Set(n) & Set(n) & Set(n) => EXIST(b):[Set''(b) &
ALL(c1):ALL(c2):ALL(c3):[(c1,c2,c3) e b <=> c1 e n & c2 e n & c3 e n]]
U Spec, 14
16 Set(n) & Set(n)
Join, 2, 2
17 Set(n) & Set(n) & Set(n)
Join, 16, 2
18 EXIST(b):[Set''(b) & ALL(c1):ALL(c2):ALL(c3):[(c1,c2,c3) e b <=> c1 e n & c2 e n & c3 e n]]
Detach, 15, 17
19 Set''(n3) & ALL(c1):ALL(c2):ALL(c3):[(c1,c2,c3) e n3 <=> c1 e n & c2 e n & c3 e n]
E Spec, 18
Define: n3
***********
20 Set''(n3)
Split, 19
21 ALL(c1):ALL(c2):ALL(c3):[(c1,c2,c3) e n3 <=> c1 e n & c2 e n & c3 e n]
Split, 19
Apply Subset Axiom
22 EXIST(sub):[Set''(sub) & ALL(a):ALL(b):ALL(c):[(a,b,c) e sub
<=>
(a,b,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(a,b,c) e d]]]]
Subset, 20
23 Set''(exp) & ALL(a):ALL(b):ALL(c):[(a,b,c) e exp
<=>
(a,b,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(a,b,c) e d]]]
E Spec, 22
Define: exp (a subset of
n3)
***********
24 Set''(exp)
Split, 23
25 ALL(a):ALL(b):ALL(c):[(a,b,c) e exp
<=>
(a,b,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(a,b,c) e d]]]
Split, 23
Prove: ALL(a):ALL(b):ALL(c):[(a,b,c) e exp => a e n & b e n & c e n &
(a,b,c) e n3]
Suppose...
26 (x,y,z) e exp
Premise
27 ALL(b):ALL(c):[(x,b,c) e exp
<=>
(x,b,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=> (x,b,c) e d]]]
U Spec, 25
28 ALL(c):[(x,y,c) e exp
<=>
(x,y,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,c) e d]]]
U Spec, 27
29 (x,y,z) e exp
<=>
(x,y,z) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,z) e d]]
U Spec, 28
30 [(x,y,z) e exp => (x,y,z) e n3 &
ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,z) e d]]]
&
[(x,y,z) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,z) e d]] => (x,y,z) e exp]
Iff-And, 29
31 (x,y,z) e exp => (x,y,z) e n3 &
ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,z) e d]]
Split, 30
32 (x,y,z) e n3 & ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,z) e d]] => (x,y,z) e exp
Split, 30
33 (x,y,z) e n3 & ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,z) e d]]
Detach, 31, 26
34 (x,y,z) e n3
Split, 33
35 ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,z) e d]]
Split, 33
36 ALL(c2):ALL(c3):[(x,c2,c3) e n3 <=> x e n & c2 e n & c3 e n]
U Spec, 21
37 ALL(c3):[(x,y,c3) e n3 <=> x e n & y e n & c3 e n]
U Spec, 36
38 (x,y,z) e n3 <=> x e n & y e n & z e n
U Spec, 37
39 [(x,y,z) e n3 => x e n & y e n & z e n]
&
[x e n & y e n & z e n => (x,y,z) e n3]
Iff-And, 38
40 (x,y,z) e n3 => x e n & y e n & z e n
Split, 39
41 x e n & y e n & z e n => (x,y,z) e n3
Split, 39
42 x e n & y e n & z e n
Detach, 40, 34
43 x e n & y e n & z e n & (x,y,z) e n3
Join, 42, 34
As Required:
44 ALL(a):ALL(b):ALL(c):[(a,b,c) e exp => a e n & b e n & c e n & (a,b,c) e n3]
4 Conclusion, 26
Prove: (0,0,x0) e exp
Apply definition of exp
45 ALL(b):ALL(c):[(0,b,c) e exp
<=>
(0,b,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,b,c) e d]]]
U Spec, 25
46 ALL(c):[(0,0,c) e exp
<=>
(0,0,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,0,c) e d]]]
U Spec, 45
47 (0,0,x0) e exp
<=>
(0,0,x0) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,0,x0) e d]]
U Spec, 46
48 [(0,0,x0) e exp => (0,0,x0) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,0,x0) e d]]]
&
[(0,0,x0) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,0,x0) e d]] => (0,0,x0) e exp]
Iff-And, 47
49 (0,0,x0) e exp => (0,0,x0) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,0,x0) e d]]
Split, 48
Sufficient: For (0,0,x0) e exp
50 (0,0,x0) e n3 & ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,0,x0) e d]] => (0,0,x0) e exp
Split, 48
51 ALL(c2):ALL(c3):[(0,c2,c3) e n3 <=> 0 e n & c2 e n & c3 e n]
U Spec, 21
52 ALL(c3):[(0,0,c3) e n3 <=> 0 e n & 0 e n & c3 e n]
U Spec, 51
53 (0,0,x0) e n3 <=> 0 e n & 0 e n & x0 e n
U Spec, 52
54 [(0,0,x0) e n3 => 0 e n & 0 e n & x0 e n]
&
[0 e n & 0 e n & x0 e n => (0,0,x0) e n3]
Iff-And, 53
55 (0,0,x0) e n3 => 0 e n & 0 e n & x0 e n
Split, 54
56 0 e n & 0 e n & x0 e n => (0,0,x0) e n3
Split, 54
57 0 e n & 0 e n
Join, 3, 3
58 0 e n & 0 e n & x0 e n
Join, 57, 11
59 (0,0,x0) e n3
Detach, 56, 58
60 Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
Premise
61 (0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
Premise
62 (0,0,x0) e d
Split, 61
63 (0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,0,x0) e d
4 Conclusion, 61
64 ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,0,x0) e d]]
4 Conclusion, 60
65 (0,0,x0) e n3
&
ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,0,x0) e d]]
Join, 59, 64
As Required:
66 (0,0,x0) e exp
Detach, 50, 65
Prove: ALL(a):[a e n => [~a=0
=> (a,0,1) e exp]]
Suppose...
67 x e n
Premise
Prove: ~x=0 => (x,0,1) e exp
Suppose...
68 ~x=0
Premise
69 ALL(b):ALL(c):[(x,b,c) e exp
<=>
(x,b,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,b,c) e d]]]
U Spec, 25
70 ALL(c):[(x,0,c) e exp
<=>
(x,0,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=> [(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,0,c) e d]]]
U Spec, 69
71 (x,0,1) e exp
<=>
(x,0,1) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,0,1) e d]]
U Spec, 70
72 [(x,0,1) e exp => (x,0,1) e n3 &
ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,0,1) e d]]]
&
[(x,0,1) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,0,1) e d]] => (x,0,1) e exp]
Iff-And, 71
73 (x,0,1) e exp => (x,0,1) e n3 &
ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,0,1) e d]]
Split, 72
Sufficient: For (x,0,1) e exp
74 (x,0,1) e n3 & ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,0,1) e d]] => (x,0,1) e exp
Split, 72
75 ALL(c2):ALL(c3):[(x,c2,c3) e n3 <=> x e n & c2 e n & c3 e n]
U Spec, 21
76 ALL(c3):[(x,0,c3) e n3 <=> x e n & 0 e n & c3 e n]
U Spec, 75
77 (x,0,1) e n3 <=> x e n & 0 e n & 1 e n
U Spec, 76
78 [(x,0,1) e n3 => x e n & 0 e n & 1 e n]
&
[x e n & 0 e n & 1 e n => (x,0,1) e n3]
Iff-And, 77
79 (x,0,1) e n3 => x e n & 0 e n & 1 e n
Split, 78
80 x e n & 0 e n & 1 e n => (x,0,1) e n3
Split, 78
81 x e n & 0 e n
Join, 67, 3
82 x e n & 0 e n & 1 e n
Join, 81, 7
83 (x,0,1) e n3
Detach, 80, 82
84 Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
Premise
Suppose...
85 (0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
Premise
86 (0,0,x0) e d
Split, 85
87 ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
Split, 85
88 ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
Split, 85
89 x e n => [~x=0 => (x,0,1) e d]
U Spec, 87
90 ~x=0 => (x,0,1) e d
Detach, 89, 67
91 (x,0,1) e d
Detach, 90, 68
92 (0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,0,1) e d
4 Conclusion, 85
93 ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,0,1) e d]]
4 Conclusion, 84
94 (x,0,1) e n3
&
ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,0,1) e d]]
Join, 83, 93
95 (x,0,1) e exp
Detach, 74, 94
As Required:
96 ~x=0 => (x,0,1) e exp
4 Conclusion, 68
As Required:
97 ALL(a):[a e n => [~a=0 => (a,0,1) e exp]]
4 Conclusion, 67
Prove: ALL(a):ALL(b):ALL(c):[(a,b,c) e exp => (a,b+1,c*a) e exp]
Suppose...
98 (x,y,z) e exp
Premise
99 ALL(b):ALL(c):[(x,b,c) e exp
<=>
(x,b,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,b,c) e d]]]
U Spec, 25
100 ALL(c):[(x,y,c) e exp
<=>
(x,y,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=> (x,y,c) e d]]]
U Spec, 99
101 (x,y,z) e exp
<=>
(x,y,z) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,z) e d]]
U Spec, 100
102 [(x,y,z) e exp => (x,y,z) e n3 &
ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,z) e d]]]
&
[(x,y,z) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,z) e d]] => (x,y,z) e exp]
Iff-And, 101
103 (x,y,z) e exp => (x,y,z) e n3 &
ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,z) e d]]
Split, 102
104 (x,y,z) e n3 & ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,z) e d]] => (x,y,z) e exp
Split, 102
105 (x,y,z) e n3 & ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,z) e d]]
Detach, 103, 98
106 (x,y,z) e n3
Split, 105
107 ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,z) e d]]
Split, 105
108 ALL(b):ALL(c):[(x,b,c) e exp
<=>
(x,b,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,b,c) e d]]]
U Spec, 25
109 ALL(c):[(x,y+1,c) e exp
<=>
(x,y+1,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,c) e d]]]
U Spec, 108
110 (x,y+1,z*x) e exp
<=>
(x,y+1,z*x) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z*x) e d]]
U Spec, 109
111 [(x,y+1,z*x) e exp => (x,y+1,z*x) e n3 &
ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z*x) e d]]]
&
[(x,y+1,z*x) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z*x) e d]] => (x,y+1,z*x) e exp]
Iff-And, 110
112 (x,y+1,z*x) e exp => (x,y+1,z*x) e n3 &
ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z*x) e d]]
Split, 111
Sufficient: For (x,y+1,z*x) e exp
113 (x,y+1,z*x) e n3 & ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z*x) e d]] => (x,y+1,z*x) e exp
Split, 111
114 ALL(c2):ALL(c3):[(x,c2,c3) e n3 <=> x e n & c2 e n & c3 e n]
U Spec, 21
115 ALL(c3):[(x,y+1,c3) e n3 <=> x e n & y+1 e n & c3 e n]
U Spec, 114
116 (x,y+1,z*x) e n3 <=> x e n & y+1 e n & z*x e n
U Spec, 115
117 [(x,y+1,z*x) e n3 => x e n & y+1 e n & z*x e n]
&
[x e n & y+1 e n & z*x e n => (x,y+1,z*x) e n3]
Iff-And, 116
118 (x,y+1,z*x) e n3 => x e n & y+1 e n & z*x e n
Split, 117
119 x e n & y+1 e n & z*x e n => (x,y+1,z*x) e n3
Split, 117
120 ALL(b):[y e n & b e n => y+b e n]
U Spec, 9
121 y e n & 1 e n => y+1 e n
U Spec, 120
122 ALL(b):ALL(c):[(x,b,c) e exp => x e n & b e n & c e n & (x,b,c) e n3]
U Spec, 44
123 ALL(c):[(x,y,c) e exp => x e n & y e n & c e n & (x,y,c) e n3]
U Spec, 122
124 (x,y,z) e exp => x e n & y e n & z e n & (x,y,z) e n3
U Spec, 123
125 x e n & y e n & z e n & (x,y,z) e n3
Detach, 124, 98
126 x e n
Split, 125
127 y e n
Split, 125
128 z e n
Split, 125
129 (x,y,z) e n3
Split, 125
130 y e n & 1 e n
Join, 127, 7
131 y+1 e n
Detach, 121, 130
132 ALL(b):[z e n & b e n => z*b e n]
U Spec, 10
133 z e n & x e n => z*x e n
U Spec, 132
134 z e n & x e n
Join, 128, 126
135 z*x e n
Detach, 133, 134
136 x e n & y+1 e n
Join, 126, 131
137 x e n & y+1 e n & z*x e n
Join, 136, 135
138 (x,y+1,z*x) e n3
Detach, 119, 137
Prove: ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d =>
(e,f+1,g*e) e d]
=>
(x,y+1,z*x) e d]]
Suppose...
139 Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
Premise
Suppose...
140 (0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
Premise
141 (0,0,x0) e d
Split, 140
142 ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
Split, 140
143 ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
Split, 140
144 ALL(f):ALL(g):[(x,f,g) e d => (x,f+1,g*x) e d]
U Spec, 143
145 ALL(g):[(x,y,g) e d => (x,y+1,g*x) e d]
U Spec, 144
146 (x,y,z) e d => (x,y+1,z*x) e d
U Spec, 145
147 Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,z) e d]
U Spec, 107
148 (0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y,z) e d
Detach, 147, 139
149 (x,y,z) e d
Detach, 148, 140
150 (x,y+1,z*x) e d
Detach, 146, 149
151 (0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z*x) e d
4 Conclusion, 140
152 ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z*x) e d]]
4 Conclusion, 139
153 (x,y+1,z*x) e n3
&
ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z*x) e d]]
Join, 138, 152
154 (x,y+1,z*x) e exp
Detach, 113, 153
As Required:
155 ALL(a):ALL(b):ALL(c):[(a,b,c) e exp => (a,b+1,c*a) e exp]
4 Conclusion, 98
Apply Function Axiom (2
varibles, as given)
156 ALL(a1):ALL(a2):ALL(b):[Set''(exp) & Set(a1) & Set(a2) &
Set(b)
=>
[ALL(c1):ALL(c2):ALL(d):[(c1,c2,d) e exp => c1 e a1 & c2 e a2 & d e b]
&
ALL(c1):ALL(c2):[c1 e a1 & c2 e a2 => EXIST(d):[d e b &
(c1,c2,d) e exp]]
&
ALL(c1):ALL(c2):ALL(d1):ALL(d2):[(c1,c2,d1) e exp &
(c1,c2,d2) e exp => d1=d2]
=>
ALL(c1):ALL(c2):ALL(d):[c1 e a1 & c2 e a2 & d e b => [d=exp(c1,c2)
<=> (c1,c2,d) e exp]]]]
U Spec, 1
157 ALL(a2):ALL(b):[Set''(exp) & Set(n) & Set(a2)
& Set(b)
=>
[ALL(c1):ALL(c2):ALL(d):[(c1,c2,d) e exp => c1 e n & c2 e a2 & d e b]
&
ALL(c1):ALL(c2):[c1 e n & c2 e a2 =>
EXIST(d):[d e b & (c1,c2,d) e exp]]
&
ALL(c1):ALL(c2):ALL(d1):ALL(d2):[(c1,c2,d1) e exp &
(c1,c2,d2) e exp => d1=d2]
=>
ALL(c1):ALL(c2):ALL(d):[c1 e n & c2 e a2 & d e b => [d=exp(c1,c2)
<=> (c1,c2,d) e exp]]]]
U Spec, 156
158 ALL(b):[Set''(exp) & Set(n) & Set(n) & Set(b)
=>
[ALL(c1):ALL(c2):ALL(d):[(c1,c2,d) e exp => c1 e n & c2 e n & d e b]
&
ALL(c1):ALL(c2):[c1 e n & c2 e n =>
EXIST(d):[d e b & (c1,c2,d) e exp]]
&
ALL(c1):ALL(c2):ALL(d1):ALL(d2):[(c1,c2,d1) e exp &
(c1,c2,d2) e exp => d1=d2]
=>
ALL(c1):ALL(c2):ALL(d):[c1 e n & c2 e n & d e b => [d=exp(c1,c2)
<=> (c1,c2,d) e exp]]]]
U Spec, 157
159 Set''(exp) & Set(n) & Set(n) & Set(n)
=>
[ALL(c1):ALL(c2):ALL(d):[(c1,c2,d) e exp => c1 e n & c2 e n & d e n]
&
ALL(c1):ALL(c2):[c1 e n & c2 e n =>
EXIST(d):[d e n & (c1,c2,d) e exp]]
&
ALL(c1):ALL(c2):ALL(d1):ALL(d2):[(c1,c2,d1) e exp &
(c1,c2,d2) e exp => d1=d2]
=>
ALL(c1):ALL(c2):ALL(d):[c1 e n & c2 e n & d e n => [d=exp(c1,c2)
<=> (c1,c2,d) e exp]]]
U Spec, 158
160 Set''(exp) & Set(n)
Join, 24, 2
161 Set''(exp) & Set(n) & Set(n)
Join, 160, 2
162 Set''(exp) & Set(n) & Set(n) & Set(n)
Join, 161, 2
Sufficient: For functionality of exp
163 ALL(c1):ALL(c2):ALL(d):[(c1,c2,d) e exp => c1 e n & c2 e n & d e n]
&
ALL(c1):ALL(c2):[c1 e n & c2 e n =>
EXIST(d):[d e n & (c1,c2,d) e exp]]
&
ALL(c1):ALL(c2):ALL(d1):ALL(d2):[(c1,c2,d1) e exp &
(c1,c2,d2) e exp => d1=d2]
=>
ALL(c1):ALL(c2):ALL(d):[c1 e n & c2 e n & d e n => [d=exp(c1,c2)
<=> (c1,c2,d) e exp]]
Detach, 159, 162
Prove: ALL(c1):ALL(c2):ALL(d):[(c1,c2,d) e exp => c1 e n & c2 e n & d e n]
Suppose...
164 (x,y,z) e exp
Premise
165 ALL(b):ALL(c):[(x,b,c) e exp => x e n & b e n & c e n & (x,b,c) e n3]
U Spec, 44
166 ALL(c):[(x,y,c) e exp => x e n & y e n & c e n & (x,y,c) e n3]
U Spec, 165
167 (x,y,z) e exp => x e n & y e n & z e n & (x,y,z) e n3
U Spec, 166
168 x e n & y e n & z e n & (x,y,z) e n3
Detach, 167, 164
169 x e n
Split, 168
170 y e n
Split, 168
171 z e n
Split, 168
172 (x,y,z) e n3
Split, 168
173 x e n & y e n
Join, 169, 170
174 x e n & y e n & z e n
Join, 173, 171
Functionality - Part 1
175 ALL(c1):ALL(c2):ALL(d):[(c1,c2,d) e exp => c1 e n & c2 e n & d e n]
4 Conclusion, 164
Prove: ALL(a):[a e n
=> [~a=0
=> ALL(b):[b e n => EXIST(c):[c e n &
(a,b,c) e exp]]]] (by induction)
Apply Subset Axiom
176 EXIST(sub):[Set(sub) & ALL(b):[b e sub <=> b e n & EXIST(c):[c e n & (0,b,c) e exp]]]
Subset, 2
177 Set(p) & ALL(b):[b e p <=> b e n & EXIST(c):[c e n & (0,b,c) e exp]]
E Spec, 176
Define: p
178 Set(p)
Split, 177
179 ALL(b):[b e p <=> b e n & EXIST(c):[c e n & (0,b,c) e exp]]
Split, 177
Apply Induction Axiom (given)
180 Set(p) & ALL(b):[b e p => b e n]
=>
[0 e p & ALL(b):[b e p => b+1 e p]
=>
ALL(b):[b e n => b e p]]
U Spec, 6
181 x e p
Premise
182 x e p <=> x e n & EXIST(c):[c e n & (0,x,c) e exp]
U Spec, 179
183 [x e p => x e n &
EXIST(c):[c e n & (0,x,c) e exp]]
&
[x e n & EXIST(c):[c e n & (0,x,c) e exp] => x e p]
Iff-And, 182
184 x e p => x e n &
EXIST(c):[c e n & (0,x,c) e exp]
Split, 183
185 x e n & EXIST(c):[c e n & (0,x,c) e exp] => x e p
Split, 183
186 x e n & EXIST(c):[c e n & (0,x,c) e exp]
Detach, 184, 181
187 x e n
Split, 186
188 ALL(b):[b e p => b e n]
4 Conclusion, 181
189 Set(p) & ALL(b):[b e p => b e n]
Join, 178, 188
Sufficient: For ALL(b):[b e n => b e p]
190 0 e p & ALL(b):[b e p => b+1 e p]
=>
ALL(b):[b e n => b e p]
Detach, 180, 189
Base case
*********
Prove: 0 e p
191 0 e p <=> 0 e n & EXIST(c):[c e n & (0,0,c) e exp]
U Spec, 179
192 [0 e p => 0 e n &
EXIST(c):[c e n & (0,0,c) e exp]]
&
[0 e n & EXIST(c):[c e n & (0,0,c) e exp] => 0 e p]
Iff-And, 191
193 0 e p => 0 e n &
EXIST(c):[c e n & (0,0,c) e exp]
Split, 192
Sufficient:
194 0 e n & EXIST(c):[c e n & (0,0,c) e exp] => 0 e p
Split, 192
195 x0 e n & (0,0,x0) e exp
Join, 11, 66
196 EXIST(c):[c e n & (0,0,c) e exp]
E Gen, 195
197 0 e n & EXIST(c):[c e n & (0,0,c) e exp]
Join, 3, 196
As Required:
198 0 e p
Detach, 194, 197
Inductive Step
**************
Suppose...
199 x e p
Premise
200 x e p <=> x e n & EXIST(c):[c e n & (0,x,c) e exp]
U Spec, 179
201 [x e p => x e n &
EXIST(c):[c e n & (0,x,c) e exp]]
&
[x e n & EXIST(c):[c e n & (0,x,c) e exp] => x e p]
Iff-And, 200
202 x e p => x e n &
EXIST(c):[c e n & (0,x,c) e exp]
Split, 201
203 x e n & EXIST(c):[c e n & (0,x,c) e exp] => x e p
Split, 201
204 x e n & EXIST(c):[c e n & (0,x,c) e exp]
Detach, 202, 199
205 x e n
Split, 204
206 EXIST(c):[c e n & (0,x,c) e exp]
Split, 204
207 y e n & (0,x,y) e exp
E Spec, 206
208 y e n
Split, 207
209 (0,x,y) e exp
Split, 207
210 x+1 e p <=> x+1 e n & EXIST(c):[c e n & (0,x+1,c) e exp]
U Spec, 179
211 [x+1 e p => x+1 e n &
EXIST(c):[c e n & (0,x+1,c) e exp]]
&
[x+1 e n & EXIST(c):[c e n & (0,x+1,c) e exp] => x+1 e p]
Iff-And, 210
212 x+1 e p => x+1 e n &
EXIST(c):[c e n & (0,x+1,c) e exp]
Split, 211
Sufficient:
213 x+1 e n & EXIST(c):[c e n & (0,x+1,c) e exp] => x+1 e p
Split, 211
214 ALL(b):[x e n & b e n => x+b e n]
U Spec, 9
215 x e n & 1 e n => x+1 e n
U Spec, 214
216 x e n & 1 e n
Join, 205, 7
217 x+1 e n
Detach, 215, 216
218 ALL(b):ALL(c):[(0,b,c) e exp => (0,b+1,c*0) e exp]
U Spec, 155
219 ALL(c):[(0,x,c) e exp => (0,x+1,c*0) e exp]
U Spec, 218
220 (0,x,y) e exp => (0,x+1,y*0) e exp
U Spec, 219
221 (0,x+1,y*0) e exp
Detach, 220, 209
222 ALL(b):[y e n & b e n => y*b e n]
U Spec, 10
223 y e n & 0 e n => y*0 e n
U Spec, 222
224 y e n & 0 e n
Join, 208, 3
225 y*0 e n
Detach, 223, 224
226 y*0 e n & (0,x+1,y*0) e exp
Join, 225, 221
227 EXIST(c):[c e n & (0,x+1,c) e exp]
E Gen, 226
228 x+1 e n & EXIST(c):[c e n & (0,x+1,c) e exp]
Join, 217, 227
229 x+1 e p
Detach, 213, 228
As Required:
230 ALL(b):[b e p => b+1 e p]
4 Conclusion, 199
231 0 e p & ALL(b):[b e p => b+1 e p]
Join, 198, 230
As Required:
232 ALL(b):[b e n => b e p]
Detach, 190, 231
Prove: ALL(b):[b e n =>
EXIST(c):[c e n & (0,b,c) e exp]]
Suppose...
233 x e n
Premise
234 x e n => x e p
U Spec, 232
235 x e p
Detach, 234, 233
236 x e p <=> x e n & EXIST(c):[c e n & (0,x,c) e exp]
U Spec, 179
237 [x e p => x e n &
EXIST(c):[c e n & (0,x,c) e exp]]
&
[x e n & EXIST(c):[c e n & (0,x,c) e exp] => x e p]
Iff-And, 236
238 x e p => x e n &
EXIST(c):[c e n & (0,x,c) e exp]
Split, 237
239 x e n & EXIST(c):[c e n & (0,x,c) e exp] => x e p
Split, 237
240 x e n & EXIST(c):[c e n & (0,x,c) e exp]
Detach, 238, 235
241 x e n
Split, 240
242 EXIST(c):[c e n & (0,x,c) e exp]
Split, 240
As Required:
243 ALL(b):[b e n => EXIST(c):[c e n & (0,b,c) e exp]]
4 Conclusion, 233
Prove: ALL(a):[a e n
=> [~a=0
=> ALL(b):[b
e n => EXIST(c):[c e n &
(a,b,c) e exp]]]]
Suppose...
244 x e n
Premise
Prove: ~x=0
=>
ALL(b):[b e n => EXIST(c):[c e n &
(x,b,c) e exp]]
Suppose...
245 ~x=0
Premise
246 EXIST(sub):[Set(sub) & ALL(b):[b e sub <=> b e n & EXIST(c):[c e n & (x,b,c) e exp]]]
Subset, 2
247 Set(p2) & ALL(b):[b e p2 <=> b e n & EXIST(c):[c e n & (x,b,c) e exp]]
E Spec, 246
Define: p2
248 Set(p2)
Split, 247
249 ALL(b):[b e p2 <=> b e n & EXIST(c):[c e n & (x,b,c) e exp]]
Split, 247
250 Set(p2) & ALL(b):[b e p2 => b e n]
=>
[0 e p2 & ALL(b):[b e p2 => b+1 e p2]
=>
ALL(b):[b e n => b e p2]]
U Spec, 6
251 y e p2
Premise
252 y e p2 <=> y e n & EXIST(c):[c e n & (x,y,c) e exp]
U Spec, 249
253 [y e p2 => y e n &
EXIST(c):[c e n & (x,y,c) e exp]]
&
[y e n & EXIST(c):[c e n & (x,y,c) e exp] => y e p2]
Iff-And, 252
254 y e p2 => y e n &
EXIST(c):[c e n & (x,y,c) e exp]
Split, 253
255 y e n & EXIST(c):[c e n & (x,y,c) e exp] => y e p2
Split, 253
256 y e n & EXIST(c):[c e n & (x,y,c) e exp]
Detach, 254, 251
257 y e n
Split, 256
258 ALL(b):[b e p2 => b e n]
4 Conclusion, 251
259 Set(p2) & ALL(b):[b e p2 => b e n]
Join, 248, 258
Sufficient:
260 0 e p2 & ALL(b):[b e p2 => b+1 e p2]
=>
ALL(b):[b e n => b e p2]
Detach, 250, 259
261 0 e p2 <=> 0 e n & EXIST(c):[c e n & (x,0,c) e exp]
U Spec, 249
262 [0 e p2 => 0 e n &
EXIST(c):[c e n & (x,0,c) e exp]]
&
[0 e n & EXIST(c):[c e n & (x,0,c) e exp] => 0 e p2]
Iff-And, 261
263 0 e p2 => 0 e n &
EXIST(c):[c e n & (x,0,c) e exp]
Split, 262
Sufficient:
264 0 e n & EXIST(c):[c e n & (x,0,c) e exp] => 0 e p2
Split, 262
265 x e n => [~x=0 => (x,0,1) e exp]
U Spec, 97
266 ~x=0 => (x,0,1) e exp
Detach, 265, 244
267 (x,0,1) e exp
Detach, 266, 245
268 1 e n & (x,0,1) e exp
Join, 7, 267
269 EXIST(c):[c e n & (x,0,c) e exp]
E Gen, 268
270 0 e n & EXIST(c):[c e n & (x,0,c) e exp]
Join, 3, 269
271 0 e p2
Detach, 264, 270
Suppose...
272 y e p2
Premise
273 y e p2 <=> y e n & EXIST(c):[c e n & (x,y,c) e exp]
U Spec, 249
274 [y e p2 => y e n &
EXIST(c):[c e n & (x,y,c) e exp]]
&
[y e n & EXIST(c):[c e n & (x,y,c) e exp] => y e p2]
Iff-And, 273
275 y e p2 => y e n &
EXIST(c):[c e n & (x,y,c) e exp]
Split, 274
276 y e n & EXIST(c):[c e n & (x,y,c) e exp] => y e p2
Split, 274
277 y e n & EXIST(c):[c e n & (x,y,c) e exp]
Detach, 275, 272
278 y e n
Split, 277
279 EXIST(c):[c e n & (x,y,c) e exp]
Split, 277
280 z e n & (x,y,z) e exp
E Spec, 279
281 z e n
Split, 280
282 (x,y,z) e exp
Split, 280
283 y+1 e p2 <=> y+1 e n & EXIST(c):[c e n & (x,y+1,c) e exp]
U Spec, 249
284 [y+1 e p2 => y+1 e n &
EXIST(c):[c e n & (x,y+1,c) e exp]]
&
[y+1 e n & EXIST(c):[c e n & (x,y+1,c) e exp] => y+1 e p2]
Iff-And, 283
285 y+1 e p2 => y+1 e n &
EXIST(c):[c e n & (x,y+1,c) e exp]
Split, 284
Sufficient:
286 y+1 e n & EXIST(c):[c e n & (x,y+1,c) e exp] => y+1 e p2
Split, 284
287 ALL(b):[y e n & b e n => y+b e n]
U Spec, 9
288 y e n & 1 e n => y+1 e n
U Spec, 287
289 y e n & 1 e n
Join, 278, 7
290 y+1 e n
Detach, 288, 289
291 ALL(b):ALL(c):[(x,b,c) e exp => (x,b+1,c*x) e exp]
U Spec, 155
292 ALL(c):[(x,y,c) e exp => (x,y+1,c*x) e exp]
U Spec, 291
293 (x,y,z) e exp => (x,y+1,z*x) e exp
U Spec, 292
294 (x,y+1,z*x) e exp
Detach, 293, 282
295 ALL(b):[z e n & b e n => z*b e n]
U Spec, 10
296 z e n & x e n => z*x e n
U Spec, 295
297 z e n & x e n
Join, 281, 244
298 z*x e n
Detach, 296, 297
299 z*x e n & (x,y+1,z*x) e exp
Join, 298, 294
300 EXIST(c):[c e n & (x,y+1,c) e exp]
E Gen, 299
301 y+1 e n & EXIST(c):[c e n & (x,y+1,c) e exp]
Join, 290, 300
302 y+1 e p2
Detach, 286, 301
As Required:
303 ALL(b):[b e p2 => b+1 e p2]
4 Conclusion, 272
304 0 e p2 & ALL(b):[b e p2 => b+1 e p2]
Join, 271, 303
As Required:
305 ALL(b):[b e n => b e p2]
Detach, 260, 304
306 y e n
Premise
307 y e n => y e p2
U Spec, 305
308 y e p2
Detach, 307, 306
309 y e p2 <=> y e n & EXIST(c):[c e n & (x,y,c) e exp]
U Spec, 249
310 [y e p2 => y e n &
EXIST(c):[c e n & (x,y,c) e exp]]
&
[y e n & EXIST(c):[c e n & (x,y,c) e exp] => y e p2]
Iff-And, 309
311 y e p2 => y e n &
EXIST(c):[c e n & (x,y,c) e exp]
Split, 310
312 y e n & EXIST(c):[c e n & (x,y,c) e exp] => y e p2
Split, 310
313 y e n & EXIST(c):[c e n & (x,y,c) e exp]
Detach, 311, 308
314 y e n
Split, 313
315 EXIST(c):[c e n & (x,y,c) e exp]
Split, 313
As Required:
316 ALL(b):[b e n => EXIST(c):[c e n & (x,b,c) e exp]]
4 Conclusion, 306
As Required:
317 ~x=0
=>
ALL(b):[b e n => EXIST(c):[c e n & (x,b,c) e exp]]
4 Conclusion, 245
As Required:
318 ALL(a):[a e n
=>
[~a=0
=>
ALL(b):[b e n => EXIST(c):[c e n & (a,b,c) e exp]]]]
4 Conclusion, 244
319 x e n & y e n
Premise
320 x e n
Split, 319
321 y e n
Split, 319
Two cases:
322 x=0 | ~x=0
Or Not
323 x=0
Premise
324 y e n => EXIST(c):[c e n & (0,y,c) e exp]
U Spec, 243
325 EXIST(c):[c e n & (0,y,c) e exp]
Detach, 324, 321
326 EXIST(c):[c e n & (x,y,c) e exp]
Substitute, 323,
325
327 x=0 => EXIST(c):[c e n & (x,y,c) e exp]
4 Conclusion, 323
328 ~x=0
Premise
329 x e n
=>
[~x=0
=>
ALL(b):[b e n => EXIST(c):[c e n & (x,b,c) e exp]]]
U Spec, 318
330 ~x=0
=>
ALL(b):[b e n => EXIST(c):[c e n & (x,b,c) e exp]]
Detach, 329, 320
331 ALL(b):[b e n => EXIST(c):[c e n & (x,b,c) e exp]]
Detach, 330, 328
332 y e n => EXIST(c):[c e n & (x,y,c) e exp]
U Spec, 331
333 EXIST(c):[c e n & (x,y,c) e exp]
Detach, 332, 321
334 ~x=0 => EXIST(c):[c e n & (x,y,c) e exp]
4 Conclusion, 328
335 [x=0 => EXIST(c):[c e n & (x,y,c) e exp]]
&
[~x=0 =>
EXIST(c):[c e n & (x,y,c) e exp]]
Join, 327, 334
336 EXIST(c):[c e n & (x,y,c) e exp]
Cases, 322, 335
Functionality - Part 2
337 ALL(a):ALL(b):[a e n & b e n => EXIST(c):[c e n & (a,b,c) e exp]]
4 Conclusion, 319
338 z e n
Premise
Suppose...
339 ~[(0,0,z) e exp => z=x0]
Premise
340 ~~[(0,0,z) e exp & ~z=x0]
Imply-And, 339
341 (0,0,z) e exp & ~z=x0
Rem DNeg, 340
342 (0,0,z) e exp
Split, 341
343 ~z=x0
Split, 341
344 ALL(b):ALL(c):[(0,b,c) e exp
<=>
(0,b,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,b,c) e d]]]
U Spec, 25
345 ALL(c):[(0,0,c) e exp
<=>
(0,0,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,0,c) e d]]]
U Spec, 344
346 (0,0,z) e exp
<=>
(0,0,z) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,0,z) e d]]
U Spec, 345
347 [(0,0,z) e exp => (0,0,z) e n3 &
ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,0,z) e d]]]
&
[(0,0,z) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,0,z) e d]] => (0,0,z) e exp]
Iff-And, 346
348 (0,0,z) e exp => (0,0,z) e n3 &
ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=> (0,0,z) e d]]
Split, 347
349 (0,0,z) e n3 & ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,0,z) e d]] => (0,0,z) e exp
Split, 347
350 ~[(0,0,z) e n3 & ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(0,0,z) e d]]] => ~(0,0,z) e exp
Contra, 348
351 ~[(0,0,z) e n3 & ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
~[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d] & ~(0,0,z) e d]]] => ~(0,0,z) e exp
Imply-And, 350
352 ~~[~(0,0,z) e n3 | ~ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
~[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d] & ~(0,0,z) e d]]] => ~(0,0,z) e exp
DeMorgan, 351
353 ~(0,0,z) e n3 | ~ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
~[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d] & ~(0,0,z) e d]] => ~(0,0,z) e exp
Rem DNeg, 352
354 ~(0,0,z) e n3 | ~~EXIST(d):~[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
~[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d] & ~(0,0,z) e d]] => ~(0,0,z) e exp
Quant, 353
355 ~(0,0,z) e n3 | EXIST(d):~[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
~[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d] & ~(0,0,z) e d]] => ~(0,0,z) e exp
Rem DNeg, 354
356 ~(0,0,z) e n3 | EXIST(d):~~[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n] & ~~[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d] & ~(0,0,z) e d]] => ~(0,0,z) e exp
Imply-And, 355
357 ~(0,0,z) e n3 | EXIST(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n] & ~~[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d] & ~(0,0,z) e d]] => ~(0,0,z) e exp
Rem DNeg, 356
Sufficient: For ~(0,0,z) e exp (to
obtain a contradiction using d=q, as defined below)
See line 157 of InfinitelyManyPowFunctions.htm
358 ~(0,0,z) e n3 | EXIST(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n] & [(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d] & ~(0,0,z) e d]] => ~(0,0,z) e exp
Rem DNeg, 357
359 EXIST(sub):[Set''(sub) & ALL(a):ALL(b):ALL(c):[(a,b,c) e sub
<=>
(a,b,c) e exp & ~[a=0 & b=0 & c=z]]]
Subset, 24
360 Set''(q) & ALL(a):ALL(b):ALL(c):[(a,b,c) e q
<=>
(a,b,c) e exp & ~[a=0 & b=0 & c=z]]
E Spec, 359
Define: q (q =
exp - (0,0,z))
361 Set''(q)
Split, 360
362 ALL(a):ALL(b):ALL(c):[(a,b,c) e q
<=>
(a,b,c) e exp & ~[a=0 & b=0 & c=z]]
Split, 360
Suppose...
363 (t,u,v) e q
Premise
364 ALL(b):ALL(c):[(t,b,c) e q
<=>
(t,b,c) e exp & ~[t=0 & b=0 & c=z]]
U Spec, 362
365 ALL(c):[(t,u,c) e q
<=>
(t,u,c) e exp & ~[t=0 & u=0 & c=z]]
U Spec, 364
366 (t,u,v) e q
<=>
(t,u,v) e exp & ~[t=0 & u=0 & v=z]
U Spec, 365
367 [(t,u,v) e q => (t,u,v) e exp & ~[t=0 & u=0 & v=z]]
&
[(t,u,v) e exp & ~[t=0 & u=0 & v=z] => (t,u,v) e q]
Iff-And, 366
368 (t,u,v) e q => (t,u,v) e exp & ~[t=0 & u=0 & v=z]
Split, 367
369 (t,u,v) e exp & ~[t=0 & u=0 & v=z] => (t,u,v) e q
Split, 367
370 (t,u,v) e exp & ~[t=0 & u=0 & v=z]
Detach, 368, 363
371 (t,u,v) e exp
Split, 370
372 ~[t=0 & u=0 & v=z]
Split, 370
373 ALL(b):ALL(c):[(t,b,c) e exp => t e n & b e n & c e n & (t,b,c) e n3]
U Spec, 44
374 ALL(c):[(t,u,c) e exp => t e n & u e n & c e n & (t,u,c) e n3]
U Spec, 373
375 (t,u,v) e exp => t e n & u e n & v e n & (t,u,v) e n3
U Spec, 374
376 t e n & u e n & v e n & (t,u,v) e n3
Detach, 375, 371
377 t e n
Split, 376
378 u e n
Split, 376
379 v e n
Split, 376
380 (t,u,v) e n3
Split, 376
381 t e n & u e n
Join, 377, 378
382 t e n & u e n & v e n
Join, 381, 379
As Required:
383 ALL(e):ALL(f):ALL(g):[(e,f,g) e q => e e n & f e n & g e n]
4 Conclusion, 363
384 ALL(b):ALL(c):[(0,b,c) e q
<=>
(0,b,c) e exp & ~[0=0 & b=0 & c=z]]
U Spec, 362
385 ALL(c):[(0,0,c) e q
<=>
(0,0,c) e exp & ~[0=0 & 0=0 & c=z]]
U Spec, 384
386 (0,0,x0) e q
<=>
(0,0,x0) e exp & ~[0=0 & 0=0 & x0=z]
U Spec, 385
387 [(0,0,x0) e q => (0,0,x0) e exp & ~[0=0 & 0=0 & x0=z]]
&
[(0,0,x0) e exp & ~[0=0 & 0=0 & x0=z] => (0,0,x0) e q]
Iff-And, 386
388 (0,0,x0) e q => (0,0,x0) e exp & ~[0=0 & 0=0 & x0=z]
Split, 387
Sufficient:
389 (0,0,x0) e exp & ~[0=0 & 0=0 & x0=z] => (0,0,x0) e q
Split, 387
390 0=0 & 0=0 & x0=z
Premise
391 0=0
Split, 390
392 0=0
Split, 390
393 x0=z
Split, 390
394 z=x0
Sym, 393
395 z=x0 & ~z=x0
Join, 394, 343
396 ~[0=0 & 0=0 & x0=z]
4 Conclusion, 390
397 (0,0,x0) e exp & ~[0=0 & 0=0 & x0=z]
Join, 66, 396
As Required:
398 (0,0,x0) e q
Detach, 389, 397
399 t e n
Premise
400 ~t=0
Premise
401 ALL(b):ALL(c):[(t,b,c) e q
<=>
(t,b,c) e exp & ~[t=0 & b=0 & c=z]]
U Spec, 362
402 ALL(c):[(t,0,c) e q
<=>
(t,0,c) e exp & ~[t=0 & 0=0 & c=z]]
U Spec, 401
403 (t,0,1) e q
<=>
(t,0,1) e exp & ~[t=0 & 0=0 & 1=z]
U Spec, 402
404 [(t,0,1) e q => (t,0,1) e exp & ~[t=0 & 0=0 & 1=z]]
&
[(t,0,1) e exp & ~[t=0 & 0=0 & 1=z] => (t,0,1) e q]
Iff-And, 403
405 (t,0,1) e q => (t,0,1) e exp & ~[t=0 & 0=0 & 1=z]
Split, 404
Sufficient:
406 (t,0,1) e exp & ~[t=0 & 0=0 & 1=z] => (t,0,1) e q
Split, 404
407 t e n => [~t=0 => (t,0,1) e exp]
U Spec, 97
408 ~t=0 => (t,0,1) e exp
Detach, 407, 399
409 (t,0,1) e exp
Detach, 408, 400
410 t=0 & 0=0 & 1=z
Premise
411 t=0
Split, 410
412 0=0
Split, 410
413 1=z
Split, 410
414 t=0 & ~t=0
Join, 411, 400
415 ~[t=0 & 0=0 & 1=z]
4 Conclusion, 410
416 (t,0,1) e exp & ~[t=0 & 0=0 & 1=z]
Join, 409, 415
417 (t,0,1) e q
Detach, 406, 416
418 ~t=0 => (t,0,1) e q
4 Conclusion, 400
As Required:
419 ALL(e):[e e n => [~e=0 => (e,0,1) e q]]
4 Conclusion, 399
420 (t,u,v) e q
Premise
421 ALL(b):ALL(c):[(t,b,c) e q
<=>
(t,b,c) e exp & ~[t=0 & b=0 & c=z]]
U Spec, 362
422 ALL(c):[(t,u,c) e q
<=>
(t,u,c) e exp & ~[t=0 & u=0 & c=z]]
U Spec, 421
423 (t,u,v) e q
<=>
(t,u,v) e exp & ~[t=0 & u=0 & v=z]
U Spec, 422
424 [(t,u,v) e q => (t,u,v) e exp & ~[t=0 & u=0 & v=z]]
&
[(t,u,v) e exp & ~[t=0 & u=0 & v=z] => (t,u,v) e q]
Iff-And, 423
425 (t,u,v) e q => (t,u,v) e exp & ~[t=0 & u=0 & v=z]
Split, 424
426 (t,u,v) e exp & ~[t=0 & u=0 & v=z] => (t,u,v) e q
Split, 424
427 (t,u,v) e exp & ~[t=0 & u=0 & v=z]
Detach, 425, 420
428 (t,u,v) e exp
Split, 427
429 ~[t=0 & u=0 & v=z]
Split, 427
430 ALL(b):ALL(c):[(t,b,c) e q
<=>
(t,b,c) e exp & ~[t=0 & b=0 & c=z]]
U Spec, 362
431 ALL(c):[(t,u+1,c) e q
<=>
(t,u+1,c) e exp & ~[t=0 & u+1=0 & c=z]]
U Spec, 430
432 (t,u+1,v*t) e q
<=>
(t,u+1,v*t) e exp & ~[t=0 & u+1=0 & v*t=z]
U Spec, 431
433 [(t,u+1,v*t) e q => (t,u+1,v*t) e exp & ~[t=0 & u+1=0 & v*t=z]]
&
[(t,u+1,v*t) e exp & ~[t=0 & u+1=0 & v*t=z] => (t,u+1,v*t) e q]
Iff-And, 432
434 (t,u+1,v*t) e q => (t,u+1,v*t) e exp & ~[t=0 & u+1=0 & v*t=z]
Split, 433
Sufficient:
435 (t,u+1,v*t) e exp & ~[t=0 & u+1=0 & v*t=z] => (t,u+1,v*t) e q
Split, 433
436 ALL(b):ALL(c):[(t,b,c) e exp => (t,b+1,c*t) e exp]
U Spec, 155
437 ALL(c):[(t,u,c) e exp => (t,u+1,c*t) e exp]
U Spec, 436
438 (t,u,v) e exp => (t,u+1,v*t) e exp
U Spec, 437
439 (t,u+1,v*t) e exp
Detach, 438, 428
440 t=0 & u+1=0 & v*t=z
Premise
441 t=0
Split, 440
442 u+1=0
Split, 440
443 v*t=z
Split, 440
444 u e n => ~u+1=0
U Spec, 5
445 ALL(b):ALL(c):[(t,b,c) e exp => t e n & b e n & c e n & (t,b,c) e n3]
U Spec, 44
446 ALL(c):[(t,u,c) e exp => t e n & u e n & c e n & (t,u,c) e n3]
U Spec, 445
447 (t,u,v) e exp => t e n & u e n & v e n & (t,u,v) e n3
U Spec, 446
448 t e n & u e n & v e n & (t,u,v) e n3
Detach, 447, 428
449 t e n
Split, 448
450 u e n
Split, 448
451 v e n
Split, 448
452 (t,u,v) e n3
Split, 448
453 ~u+1=0
Detach, 444, 450
454 u+1=0 & ~u+1=0
Join, 442, 453
455 ~[t=0 & u+1=0 & v*t=z]
4 Conclusion, 440
456 (t,u+1,v*t) e exp & ~[t=0 & u+1=0 & v*t=z]
Join, 439, 455
457 (t,u+1,v*t) e q
Detach, 435, 456
As Required:
458 ALL(e):ALL(f):ALL(g):[(e,f,g) e q => (e,f+1,g*e) e q]
4 Conclusion, 420
459 ALL(b):ALL(c):[(0,b,c) e q
<=>
(0,b,c) e exp & ~[0=0 & b=0 & c=z]]
U Spec, 362
460 ALL(c):[(0,0,c) e q
<=>
(0,0,c) e exp & ~[0=0 & 0=0 & c=z]]
U Spec, 459
461 (0,0,z) e q
<=>
(0,0,z) e exp & ~[0=0 & 0=0 & z=z]
U Spec, 460
462 [(0,0,z) e q => (0,0,z) e exp & ~[0=0 & 0=0 & z=z]]
&
[(0,0,z) e exp & ~[0=0 & 0=0 & z=z] => (0,0,z) e q]
Iff-And, 461
463 (0,0,z) e q => (0,0,z) e exp & ~[0=0 & 0=0 & z=z]
Split, 462
464 (0,0,z) e exp & ~[0=0 & 0=0 & z=z] => (0,0,z) e q
Split, 462
465 ~[(0,0,z) e exp & ~[0=0 & 0=0 & z=z]] => ~(0,0,z) e q
Contra, 463
466 ~~[~(0,0,z) e exp | ~~[0=0 & 0=0 & z=z]] => ~(0,0,z) e q
DeMorgan, 465
467 ~(0,0,z) e exp | ~~[0=0 & 0=0 & z=z] => ~(0,0,z) e q
Rem DNeg, 466
468 ~(0,0,z) e exp | 0=0 & 0=0 & z=z => ~(0,0,z) e q
Rem DNeg, 467
469 0=0
Reflex
470 z=z
Reflex
471 0=0 & 0=0
Join, 469, 469
472 0=0 & 0=0 & z=z
Join, 471, 470
473 ~(0,0,z) e exp | 0=0 & 0=0 & z=z
Arb Or, 472
As Required:
474 ~(0,0,z) e q
Detach, 468, 473
475 Set''(q)
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e q => e e n & f e n & g e n]
Join, 361, 383
476 (0,0,x0) e q
&
ALL(e):[e e n => [~e=0 => (e,0,1) e q]]
Join, 398, 419
477 (0,0,x0) e q
&
ALL(e):[e e n => [~e=0 => (e,0,1) e q]]
& ALL(e):ALL(f):ALL(g):[(e,f,g) e q => (e,f+1,g*e) e q]
Join, 476, 458
478 (0,0,x0) e q
&
ALL(e):[e e n => [~e=0 => (e,0,1) e q]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e q => (e,f+1,g*e) e q]
&
~(0,0,z) e q
Join, 477, 474
479 Set''(q)
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e q => e e n & f e n & g e n]
&
[(0,0,x0) e q
&
ALL(e):[e e n => [~e=0 => (e,0,1) e q]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e q => (e,f+1,g*e) e q]
&
~(0,0,z) e q]
Join, 475, 478
480 EXIST(d):[Set''(d)
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
&
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
&
~(0,0,z) e d]]
E Gen, 479
481 ~(0,0,z) e n3 | EXIST(d):[Set''(d)
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
&
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
&
~(0,0,z) e d]]
Arb Or, 480
482 ~(0,0,z) e exp
Detach, 358, 481
483 (0,0,z) e exp & ~(0,0,z) e exp
Join, 342, 482
As Required:
484 ~~[(0,0,z) e exp => z=x0]
4 Conclusion, 339
485 (0,0,z) e exp => z=x0
Rem DNeg, 484
As Required:
486 ALL(a):[a e n => [(0,0,a) e exp => a=x0]]
4 Conclusion, 338
Suppose...
487 t e n
Premise
488 ~t=0
Premise
Suppose to the contrary...
489 ~[(t,0,z) e exp => z=1]
Premise
490 ~~[(t,0,z) e exp & ~z=1]
Imply-And, 489
491 (t,0,z) e exp & ~z=1
Rem DNeg, 490
492 (t,0,z) e exp
Split, 491
493 ~z=1
Split, 491
494 ALL(b):ALL(c):[(t,b,c) e exp
<=>
(t,b,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(t,b,c) e d]]]
U Spec, 25
495 ALL(c):[(t,0,c) e exp
<=>
(t,0,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(t,0,c) e d]]]
U Spec, 494
496 (t,0,z) e exp
<=>
(t,0,z) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=> (t,0,z) e d]]
U Spec, 495
497 [(t,0,z) e exp => (t,0,z) e n3 &
ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(t,0,z) e d]]]
&
[(t,0,z) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(t,0,z) e d]] => (t,0,z) e exp]
Iff-And, 496
498 (t,0,z) e exp => (t,0,z) e n3 &
ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(t,0,z) e d]]
Split, 497
499 (t,0,z) e n3 & ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(t,0,z) e d]] => (t,0,z) e exp
Split, 497
500 ~[(t,0,z) e n3 & ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(t,0,z) e d]]] => ~(t,0,z) e exp
Contra, 498
501 ~~[~(t,0,z) e n3 | ~ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(t,0,z) e d]]] => ~(t,0,z) e exp
DeMorgan, 500
502 ~(t,0,z) e n3 | ~ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=> (t,0,z) e d]] => ~(t,0,z) e exp
Rem DNeg, 501
503 ~(t,0,z) e n3 | ~~EXIST(d):~[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(t,0,z) e d]] => ~(t,0,z) e exp
Quant, 502
504 ~(t,0,z) e n3 | EXIST(d):~[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(t,0,z) e d]] => ~(t,0,z) e exp
Rem DNeg, 503
505 ~(t,0,z) e n3 | EXIST(d):~~[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n] & ~[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(t,0,z) e d]] => ~(t,0,z) e exp
Imply-And, 504
506 ~(t,0,z) e n3 | EXIST(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n] & ~[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(t,0,z) e d]] => ~(t,0,z) e exp
Rem DNeg, 505
507 ~(t,0,z) e n3 | EXIST(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n] & ~~[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d] & ~(t,0,z) e d]] => ~(t,0,z) e exp
Imply-And, 506
Sufficient: For ~(t,0,z) e exp (to obtain a
contradiction)
508 ~(t,0,z) e n3 | EXIST(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n] & [(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d] & ~(t,0,z) e d]] => ~(t,0,z) e exp
Rem DNeg, 507
509 EXIST(sub):[Set''(sub) & ALL(a):ALL(b):ALL(c):[(a,b,c) e sub
<=>
(a,b,c) e exp & ~[a=t & b=0 & c=z]]]
Subset, 24
510 Set''(q) & ALL(a):ALL(b):ALL(c):[(a,b,c) e q
<=>
(a,b,c) e exp & ~[a=t & b=0 & c=z]]
E Spec, 509
Define: q
(exp - {t,0,z})
511 Set''(q)
Split, 510
512 ALL(a):ALL(b):ALL(c):[(a,b,c) e q
<=>
(a,b,c) e exp & ~[a=t & b=0 & c=z]]
Split, 510
Suppose...
513 (u,v,w) e q
Premise
514 ALL(b):ALL(c):[(u,b,c) e q
<=>
(u,b,c) e exp & ~[u=t & b=0 & c=z]]
U Spec, 512
515 ALL(c):[(u,v,c) e q
<=>
(u,v,c) e exp & ~[u=t & v=0 & c=z]]
U Spec, 514
516 (u,v,w) e q
<=>
(u,v,w) e exp & ~[u=t & v=0 & w=z]
U Spec, 515
517 [(u,v,w) e q => (u,v,w) e exp & ~[u=t & v=0 & w=z]]
&
[(u,v,w) e exp & ~[u=t & v=0 & w=z] => (u,v,w) e q]
Iff-And, 516
518 (u,v,w) e q => (u,v,w) e exp & ~[u=t & v=0 & w=z]
Split, 517
519 (u,v,w) e exp & ~[u=t & v=0 & w=z] => (u,v,w) e q
Split, 517
520 (u,v,w) e exp & ~[u=t & v=0 & w=z]
Detach, 518, 513
521 (u,v,w) e exp
Split, 520
522 ~[u=t & v=0 & w=z]
Split, 520
523 ALL(b):ALL(c):[(u,b,c) e exp => u e n & b e n & c e n & (u,b,c) e n3]
U Spec, 44
524 ALL(c):[(u,v,c) e exp => u e n & v e n & c e n & (u,v,c) e n3]
U Spec, 523
525 (u,v,w) e exp => u e n & v e n & w e n & (u,v,w) e n3
U Spec, 524
526 u e n & v e n & w e n & (u,v,w) e n3
Detach, 525, 521
527 u e n
Split, 526
528 v e n
Split, 526
529 w e n
Split, 526
530 (u,v,w) e n3
Split, 526
531 u e n & v e n
Join, 527, 528
532 u e n & v e n & w e n
Join, 531, 529
As Required:
533 ALL(e):ALL(f):ALL(g):[(e,f,g) e q => e e n & f e n & g e n]
4 Conclusion, 513
534 ALL(b):ALL(c):[(0,b,c) e q
<=>
(0,b,c) e exp & ~[0=t & b=0 & c=z]]
U Spec, 512
535 ALL(c):[(0,0,c) e q
<=>
(0,0,c) e exp & ~[0=t & 0=0 & c=z]]
U Spec, 534
536 (0,0,x0) e q
<=>
(0,0,x0) e exp & ~[0=t & 0=0 & x0=z]
U Spec, 535
537 [(0,0,x0) e q => (0,0,x0) e exp & ~[0=t & 0=0 & x0=z]]
&
[(0,0,x0) e exp & ~[0=t & 0=0 & x0=z] => (0,0,x0) e q]
Iff-And, 536
538 (0,0,x0) e q => (0,0,x0) e exp & ~[0=t & 0=0 & x0=z]
Split, 537
Sufficient:
539 (0,0,x0) e exp & ~[0=t & 0=0 & x0=z] => (0,0,x0) e q
Split, 537
540 0=t & 0=0 & x0=z
Premise
541 0=t
Split, 540
542 0=0
Split, 540
543 x0=z
Split, 540
544 t=0
Substitute, 541,
542
545 t=0 & ~t=0
Join, 544, 488
546 ~[0=t & 0=0 & x0=z]
4 Conclusion, 540
547 (0,0,x0) e exp & ~[0=t & 0=0 & x0=z]
Join, 66, 546
As Required:
548 (0,0,x0) e q
Detach, 539, 547
549 u e n
Premise
550 ~u=0
Premise
551 ALL(b):ALL(c):[(u,b,c) e q
<=>
(u,b,c) e exp & ~[u=t & b=0 & c=z]]
U Spec, 512
552 ALL(c):[(u,0,c) e q
<=>
(u,0,c) e exp & ~[u=t & 0=0 & c=z]]
U Spec, 551
553 (u,0,1) e q
<=>
(u,0,1) e exp & ~[u=t & 0=0 & 1=z]
U Spec, 552
554 [(u,0,1) e q => (u,0,1) e exp & ~[u=t & 0=0 & 1=z]]
&
[(u,0,1) e exp & ~[u=t & 0=0 & 1=z] => (u,0,1) e q]
Iff-And, 553
555 (u,0,1) e q => (u,0,1) e exp & ~[u=t & 0=0 & 1=z]
Split, 554
Sufficient:
556 (u,0,1) e exp & ~[u=t & 0=0 & 1=z] => (u,0,1) e q
Split, 554
557 u e n => [~u=0 => (u,0,1) e exp]
U Spec, 97
558 ~u=0 => (u,0,1) e exp
Detach, 557, 549
559 (u,0,1) e exp
Detach, 558, 550
560 u=t & 0=0 & 1=z
Premise
561 u=t
Split, 560
562 0=0
Split, 560
563 1=z
Split, 560
564 z=1
Sym, 563
565 z=1 & ~z=1
Join, 564, 493
566 ~[u=t & 0=0 & 1=z]
4 Conclusion, 560
567 (u,0,1) e exp & ~[u=t & 0=0 & 1=z]
Join, 559, 566
568 (u,0,1) e q
Detach, 556, 567
569 ~u=0 => (u,0,1) e q
4 Conclusion, 550
As Required:
570 ALL(e):[e e n => [~e=0 => (e,0,1) e q]]
4 Conclusion, 549
571 (u,v,w) e q
Premise
572 ALL(b):ALL(c):[(u,b,c) e q
<=>
(u,b,c) e exp & ~[u=t & b=0 & c=z]]
U Spec, 512
573 ALL(c):[(u,v,c) e q
<=>
(u,v,c) e exp & ~[u=t & v=0 & c=z]]
U Spec, 572
574 (u,v,w) e q
<=>
(u,v,w) e exp & ~[u=t & v=0 & w=z]
U Spec, 573
575 [(u,v,w) e q => (u,v,w) e exp & ~[u=t & v=0 & w=z]]
&
[(u,v,w) e exp & ~[u=t & v=0 & w=z] => (u,v,w) e q]
Iff-And, 574
576 (u,v,w) e q => (u,v,w) e exp & ~[u=t & v=0 & w=z]
Split, 575
577 (u,v,w) e exp & ~[u=t & v=0 & w=z] => (u,v,w) e q
Split, 575
578 (u,v,w) e exp & ~[u=t & v=0 & w=z]
Detach, 576, 571
579 (u,v,w) e exp
Split, 578
580 ~[u=t & v=0 & w=z]
Split, 578
581 ALL(b):ALL(c):[(u,b,c) e q
<=>
(u,b,c) e exp & ~[u=t & b=0 & c=z]]
U Spec, 512
582 ALL(c):[(u,v+1,c) e q
<=>
(u,v+1,c) e exp & ~[u=t & v+1=0 & c=z]]
U Spec, 581
583 (u,v+1,w*u) e q
<=>
(u,v+1,w*u) e exp & ~[u=t & v+1=0 & w*u=z]
U Spec, 582
584 [(u,v+1,w*u) e q => (u,v+1,w*u) e exp & ~[u=t & v+1=0 & w*u=z]]
&
[(u,v+1,w*u) e exp & ~[u=t & v+1=0 & w*u=z] => (u,v+1,w*u) e q]
Iff-And, 583
585 (u,v+1,w*u) e q => (u,v+1,w*u) e exp & ~[u=t & v+1=0 & w*u=z]
Split, 584
Sufficient:
586 (u,v+1,w*u) e exp & ~[u=t & v+1=0 & w*u=z] => (u,v+1,w*u) e q
Split, 584
587 ALL(b):ALL(c):[(u,b,c) e exp => (u,b+1,c*u) e exp]
U Spec, 155
588 ALL(c):[(u,v,c) e exp => (u,v+1,c*u) e exp]
U Spec, 587
589 (u,v,w) e exp => (u,v+1,w*u) e exp
U Spec, 588
590 (u,v+1,w*u) e exp
Detach, 589, 579
591 u=t & v+1=0 & w*u=z
Premise
592 u=t
Split, 591
593 v+1=0
Split, 591
594 w*u=z
Split, 591
595 v e n => ~v+1=0
U Spec, 5
596 ALL(b):ALL(c):[(u,b,c) e exp => u e n & b e n & c e n & (u,b,c) e n3]
U Spec, 44
597 ALL(c):[(u,v,c) e exp => u e n & v e n & c e n & (u,v,c) e n3]
U Spec, 596
598 (u,v,w) e exp => u e n & v e n & w e n & (u,v,w) e n3
U Spec, 597
599 u e n & v e n & w e n & (u,v,w) e n3
Detach, 598, 579
600 u e n
Split, 599
601 v e n
Split, 599
602 w e n
Split, 599
603 (u,v,w) e n3
Split, 599
604 ~v+1=0
Detach, 595, 601
605 v+1=0 & ~v+1=0
Join, 593, 604
606 ~[u=t & v+1=0 & w*u=z]
4 Conclusion, 591
607 (u,v+1,w*u) e exp & ~[u=t & v+1=0 & w*u=z]
Join, 590, 606
608 (u,v+1,w*u) e q
Detach, 586, 607
As Required:
609 ALL(e):ALL(f):ALL(g):[(e,f,g) e q => (e,f+1,g*e) e q]
4 Conclusion, 571
610 ALL(b):ALL(c):[(t,b,c) e q
<=>
(t,b,c) e exp & ~[t=t & b=0 & c=z]]
U Spec, 512
611 ALL(c):[(t,0,c) e q
<=>
(t,0,c) e exp & ~[t=t & 0=0 & c=z]]
U Spec, 610
612 (t,0,z) e q
<=>
(t,0,z) e exp & ~[t=t & 0=0 & z=z]
U Spec, 611
613 [(t,0,z) e q => (t,0,z) e exp & ~[t=t & 0=0 & z=z]]
&
[(t,0,z) e exp & ~[t=t & 0=0 & z=z] => (t,0,z) e q]
Iff-And, 612
614 (t,0,z) e q => (t,0,z) e exp & ~[t=t & 0=0 & z=z]
Split, 613
615 (t,0,z) e exp & ~[t=t & 0=0 & z=z] => (t,0,z) e q
Split, 613
616 ~[(t,0,z) e exp & ~[t=t & 0=0 & z=z]] => ~(t,0,z) e q
Contra, 614
617 ~~[~(t,0,z) e exp | ~~[t=t & 0=0 & z=z]] => ~(t,0,z) e q
DeMorgan, 616
618 ~(t,0,z) e exp | ~~[t=t & 0=0 & z=z] => ~(t,0,z) e q
Rem DNeg, 617
619 ~(t,0,z) e exp | t=t & 0=0 & z=z => ~(t,0,z) e q
Rem DNeg, 618
620 t=t
Reflex
621 0=0
Reflex
622 z=z
Reflex
623 t=t & 0=0
Join, 620, 621
624 t=t & 0=0 & z=z
Join, 623, 622
625 ~(t,0,z) e exp | t=t & 0=0 & z=z
Arb Or, 624
As Required:
626 ~(t,0,z) e q
Detach, 619, 625
627 Set''(q)
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e q => e e n & f e n & g e n]
Join, 511, 533
628 (0,0,x0) e q
&
ALL(e):[e e n => [~e=0 => (e,0,1) e q]]
Join, 548, 570
629 (0,0,x0) e q
&
ALL(e):[e e n => [~e=0 => (e,0,1) e q]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e q => (e,f+1,g*e) e q]
Join, 628, 609
630 (0,0,x0) e q
&
ALL(e):[e e n => [~e=0 => (e,0,1) e q]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e q => (e,f+1,g*e) e q]
&
~(t,0,z) e q
Join, 629, 626
631 Set''(q)
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e q => e e n & f e n & g e n]
&
[(0,0,x0) e q
&
ALL(e):[e e n => [~e=0 => (e,0,1) e q]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e q => (e,f+1,g*e) e q]
&
~(t,0,z) e q]
Join, 627, 630
632 EXIST(d):[Set''(d)
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
&
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
&
~(t,0,z) e d]]
E Gen, 631
633 ~(t,0,z) e n3 | EXIST(d):[Set''(d)
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
&
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
&
~(t,0,z) e d]]
Arb Or, 632
634 ~(t,0,z) e exp
Detach, 508, 633
635 (t,0,z) e exp & ~(t,0,z) e exp
Join, 492, 634
636 ~EXIST(c):~[(t,0,c) e exp => c=1]
4 Conclusion, 489
637 ~~ALL(c):~~[(t,0,c) e exp => c=1]
Quant, 636
638 ALL(c):~~[(t,0,c) e exp => c=1]
Rem DNeg, 637
639 ALL(c):[(t,0,c) e exp => c=1]
Rem DNeg, 638
640 ~t=0 => ALL(c):[(t,0,c) e exp => c=1]
4 Conclusion, 488
As Required:
641 ALL(a):[a e n => [~a=0 =>
ALL(c):[(a,0,c) e exp => c=1]]]
4 Conclusion, 487
Supose...
642 x e n
Premise
643 EXIST(sub):[Set(sub) & ALL(b):[b e sub <=> b e n & ALL(c):ALL(d):[(x,b,c) e exp & (x,b,d) e exp => c=d]]]
Subset, 2
644 Set(p3) & ALL(b):[b e p3 <=> b e n & ALL(c):ALL(d):[(x,b,c) e exp & (x,b,d) e exp => c=d]]
E Spec, 643
Define: p3
645 Set(p3)
Split, 644
646 ALL(b):[b e p3 <=> b e n & ALL(c):ALL(d):[(x,b,c) e exp & (x,b,d) e exp => c=d]]
Split, 644
647 Set(p3) & ALL(b):[b e p3 => b e n]
=>
[0 e p3 & ALL(b):[b e p3 => b+1 e p3]
=>
ALL(b):[b e n => b e p3]]
U Spec, 6
648 y e p3
Premise
649 y e p3 <=> y e n & ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d]
U Spec, 646
650 [y e p3 => y e n &
ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d]]
&
[y e n & ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d] => y e p3]
Iff-And, 649
651 y e p3 => y e n &
ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d]
Split, 650
652 y e n & ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d] => y e p3
Split, 650
653 y e n & ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d]
Detach, 651, 648
654 y e n
Split, 653
655 ALL(b):[b e p3 => b e n]
4 Conclusion, 648
656 Set(p3) & ALL(b):[b e p3 => b e n]
Join, 645, 655
Sufficient:
657 0 e p3 & ALL(b):[b e p3 => b+1 e p3]
=>
ALL(b):[b e n => b e p3]
Detach, 647, 656
658 0 e p3 <=> 0 e n & ALL(c):ALL(d):[(x,0,c) e exp & (x,0,d) e exp => c=d]
U Spec, 646
659 [0 e p3 => 0 e n &
ALL(c):ALL(d):[(x,0,c) e exp & (x,0,d) e exp => c=d]]
&
[0 e n & ALL(c):ALL(d):[(x,0,c) e exp & (x,0,d) e exp => c=d] => 0 e p3]
Iff-And, 658
660 0 e p3 => 0 e n &
ALL(c):ALL(d):[(x,0,c) e exp & (x,0,d) e exp => c=d]
Split, 659
Sufficient:
661 0 e n & ALL(c):ALL(d):[(x,0,c) e exp & (x,0,d) e exp => c=d] => 0 e p3
Split, 659
662 x=0 | ~x=0
Or Not
663 (x,0,z1) e exp & (x,0,z2) e exp
Premise
664 (x,0,z1) e exp
Split, 663
665 (x,0,z2) e exp
Split, 663
666 ALL(b):ALL(c):[(x,b,c) e exp => x e n & b e n & c e n & (x,b,c) e n3]
U Spec, 44
667 ALL(c):[(x,0,c) e exp => x e n & 0 e n & c e n & (x,0,c) e n3]
U Spec, 666
668 (x,0,z1) e exp => x e n & 0 e n & z1 e n & (x,0,z1) e n3
U Spec, 667
669 x e n & 0 e n & z1 e n & (x,0,z1) e n3
Detach, 668, 664
670 x e n
Split, 669
671 0 e n
Split, 669
672 z1 e n
Split, 669
673 (x,0,z1) e n3
Split, 669
674 (x,0,z2) e exp => x e n & 0 e n & z2 e n & (x,0,z2) e n3
U Spec, 667
675 x e n & 0 e n & z2 e n & (x,0,z2) e n3
Detach, 674, 665
676 x e n
Split, 675
677 0 e n
Split, 675
678 z2 e n
Split, 675
679 (x,0,z2) e n3
Split, 675
680 x=0
Premise
681 z1 e n => [(0,0,z1) e exp => z1=x0]
U Spec, 486
682 (0,0,z1) e exp => z1=x0
Detach, 681, 672
683 (0,0,z1) e exp
Substitute, 680,
664
684 z1=x0
Detach, 682, 683
685 z2 e n => [(0,0,z2) e exp => z2=x0]
U Spec, 486
686 (0,0,z2) e exp => z2=x0
Detach, 685, 678
687 (0,0,z2) e exp
Substitute, 680,
665
688 z2=x0
Detach, 686, 687
689 z1=z2
Substitute, 688,
684
690 x=0 => z1=z2
4 Conclusion, 680
691 ~x=0
Premise
692 x e n => [~x=0 => ALL(c):[(x,0,c) e exp => c=1]]
U Spec, 641
693 ~x=0 => ALL(c):[(x,0,c) e exp => c=1]
Detach, 692, 642
694 ALL(c):[(x,0,c) e exp => c=1]
Detach, 693, 691
695 (x,0,z1) e exp => z1=1
U Spec, 694
696 z1=1
Detach, 695, 664
697 (x,0,z2) e exp => z2=1
U Spec, 694
698 z2=1
Detach, 697, 665
699 z1=z2
Substitute, 698,
696
700 ~x=0 => z1=z2
4 Conclusion, 691
701 [x=0 => z1=z2] & [~x=0 => z1=z2]
Join, 690, 700
702 z1=z2
Cases, 662, 701
703 ALL(c):ALL(d):[(x,0,c) e exp & (x,0,d) e exp => c=d]
4 Conclusion, 663
704 0 e n
&
ALL(c):ALL(d):[(x,0,c) e exp & (x,0,d) e exp => c=d]
Join, 3, 703
As Required:
705 0 e p3
Detach, 661, 704
Suppose...
706 y e p3
Premise
707 y e p3 <=> y e n & ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d]
U Spec, 646
708 [y e p3 => y e n &
ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d]]
&
[y e n & ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d] => y e p3]
Iff-And, 707
709 y e p3 => y e n &
ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d]
Split, 708
710 y e n & ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d] => y e p3
Split, 708
711 y e n & ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d]
Detach, 709, 706
712 y e n
Split, 711
713 ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d]
Split, 711
714 ALL(b):[x e n & b e n =>
EXIST(c):[c e n & (x,b,c) e exp]]
U Spec, 337
715 x e n & y e n =>
EXIST(c):[c e n & (x,y,c) e exp]
U Spec, 714
716 x e n & y e n
Join, 642, 712
717 EXIST(c):[c e n & (x,y,c) e exp]
Detach, 715, 716
718 z1 e n & (x,y,z1) e exp
E Spec, 717
719 ALL(b):[x e n & b e n =>
EXIST(c):[c e n & (x,b,c) e exp]]
U Spec, 337
720 x e n & y e n =>
EXIST(c):[c e n & (x,y,c) e exp]
U Spec, 719
721 x e n & y e n
Join, 642, 712
722 EXIST(c):[c e n & (x,y,c) e exp]
Detach, 720, 721
723 z e n & (x,y,z) e exp
E Spec, 722
724 z e n
Split, 723
725 (x,y,z) e exp
Split, 723
726 ALL(d):[(x,y,z) e exp & (x,y,d) e exp => z=d]
U Spec, 713
Suppose...
727 z' e n
Premise
728 (x,y,z) e exp & (x,y,z') e exp => z=z'
U Spec, 726
729 (x,y,z') e exp
Premise
730 (x,y,z) e exp & (x,y,z') e exp
Join, 725, 729
731 z=z'
Detach, 728, 730
732 (x,y,z') e exp => z=z'
4 Conclusion, 729
733 ALL(c):[c e n => [(x,y,c) e exp => z=c]]
4 Conclusion, 727
Suppose...
734 z' e n
Premise
Suppose to the contrary...
735 ~[(x,y+1,z') e exp => z'=z*x]
Premise
736 ~~[(x,y+1,z') e exp & ~z'=z*x]
Imply-And, 735
737 (x,y+1,z') e exp & ~z'=z*x
Rem DNeg, 736
738 (x,y+1,z') e exp
Split, 737
739 ~z'=z*x
Split, 737
740 ALL(b):ALL(c):[(x,b,c) e exp
<=>
(x,b,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,b,c) e d]]]
U Spec, 25
741 ALL(c):[(x,y+1,c) e exp
<=>
(x,y+1,c) e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,c) e d]]]
U Spec, 740
742 (x,y+1,z') e exp
<=>
(x,y+1,z') e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z') e d]]
U Spec, 741
743 [(x,y+1,z') e exp => (x,y+1,z') e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=> [(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z') e d]]]
&
[(x,y+1,z') e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z') e d]] => (x,y+1,z') e exp]
Iff-And, 742
744 (x,y+1,z') e exp => (x,y+1,z') e n3 & ALL(d):[Set''(d) & ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z') e d]]
Split, 743
745 (x,y+1,z') e n3 & ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z') e d]] => (x,y+1,z') e exp
Split, 743
746 ~[(x,y+1,z') e n3 & ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z') e d]]] => ~(x,y+1,z') e exp
Contra, 744
747 ~~[~(x,y+1,z') e n3 | ~ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z') e d]]] => ~(x,y+1,z') e exp
DeMorgan, 746
748 ~(x,y+1,z') e n3 | ~ALL(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z') e d]] => ~(x,y+1,z') e exp
Rem DNeg, 747
749 ~(x,y+1,z') e n3 | ~~EXIST(d):~[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z') e d]] => ~(x,y+1,z') e exp
Quant, 748
750 ~(x,y+1,z') e n3 | EXIST(d):~[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
=>
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z') e d]] => ~(x,y+1,z') e exp
Rem DNeg, 749
751 ~(x,y+1,z') e n3 | EXIST(d):~~[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n] & ~[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z') e d]] => ~(x,y+1,z') e exp
Imply-And, 750
752 ~(x,y+1,z') e n3 | EXIST(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n] & ~[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
=>
(x,y+1,z') e d]] => ~(x,y+1,z') e exp
Rem DNeg, 751
753 ~(x,y+1,z') e n3 | EXIST(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n] & ~~[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d] & ~(x,y+1,z') e d]] => ~(x,y+1,z') e exp
Imply-And, 752
Sufficient: ~(x,y+1,z') e exp
754 ~(x,y+1,z') e n3 | EXIST(d):[Set''(d) &
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n] & [(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d] & ~(x,y+1,z') e d]] => ~(x,y+1,z') e exp
Rem DNeg, 753
755 EXIST(sub):[Set''(sub) & ALL(a):ALL(b):ALL(c):[(a,b,c) e sub
<=>
(a,b,c) e exp & ~[a=x & b=y+1 & c=z']]]
Subset, 24
756 Set''(q) & ALL(a):ALL(b):ALL(c):[(a,b,c) e q
<=>
(a,b,c) e exp & ~[a=x & b=y+1 & c=z']]
E Spec, 755
Define: q
757 Set''(q)
Split, 756
758 ALL(a):ALL(b):ALL(c):[(a,b,c) e q
<=>
(a,b,c) e exp & ~[a=x & b=y+1 & c=z']]
Split, 756
759 (t,u,v) e q
Premise
760 ALL(b):ALL(c):[(t,b,c) e q
<=>
(t,b,c) e exp & ~[t=x & b=y+1 & c=z']]
U Spec, 758
761 ALL(c):[(t,u,c) e q
<=>
(t,u,c) e exp & ~[t=x & u=y+1 & c=z']]
U Spec, 760
762 (t,u,v) e q
<=>
(t,u,v) e exp & ~[t=x & u=y+1 & v=z']
U Spec, 761
763 [(t,u,v) e q => (t,u,v) e exp & ~[t=x & u=y+1 & v=z']]
&
[(t,u,v) e exp & ~[t=x & u=y+1 & v=z'] => (t,u,v) e q]
Iff-And, 762
764 (t,u,v) e q => (t,u,v) e exp & ~[t=x & u=y+1 & v=z']
Split, 763
765 (t,u,v) e exp & ~[t=x & u=y+1 & v=z'] => (t,u,v) e q
Split, 763
766 (t,u,v) e exp & ~[t=x & u=y+1 & v=z']
Detach, 764, 759
767 (t,u,v) e exp
Split, 766
768 ~[t=x & u=y+1 & v=z']
Split, 766
769 ALL(b):ALL(c):[(t,b,c) e exp => t e n & b e n & c e n & (t,b,c) e n3]
U Spec, 44
770 ALL(c):[(t,u,c) e exp => t e n & u e n & c e n & (t,u,c) e n3]
U Spec, 769
771 (t,u,v) e exp => t e n & u e n & v e n & (t,u,v) e n3
U Spec, 770
772 t e n & u e n & v e n & (t,u,v) e n3
Detach, 771, 767
773 t e n
Split, 772
774 u e n
Split, 772
775 v e n
Split, 772
776 (t,u,v) e n3
Split, 772
777 t e n & u e n
Join, 773, 774
778 t e n & u e n & v e n
Join, 777, 775
As Required:
779 ALL(e):ALL(f):ALL(g):[(e,f,g) e q => e e n & f e n & g e n]
4 Conclusion, 759
780 ALL(b):ALL(c):[(0,b,c) e q
<=>
(0,b,c) e exp & ~[0=x & b=y+1 & c=z']]
U Spec, 758
781 ALL(c):[(0,0,c) e q
<=>
(0,0,c) e exp & ~[0=x & 0=y+1 & c=z']]
U Spec, 780
782 (0,0,x0) e q
<=>
(0,0,x0) e exp & ~[0=x & 0=y+1 & x0=z']
U Spec, 781
783 [(0,0,x0) e q => (0,0,x0) e exp & ~[0=x & 0=y+1 & x0=z']]
&
[(0,0,x0) e exp & ~[0=x & 0=y+1 & x0=z'] => (0,0,x0) e q]
Iff-And, 782
784 (0,0,x0) e q => (0,0,x0) e exp & ~[0=x & 0=y+1 & x0=z']
Split, 783
785 (0,0,x0) e exp & ~[0=x & 0=y+1 & x0=z'] => (0,0,x0) e q
Split, 783
Suppose to the contrary...
786 0=x & 0=y+1 & x0=z'
Premise
787 0=x
Split, 786
788 0=y+1
Split, 786
789 x0=z'
Split, 786
790 y e n => ~y+1=0
U Spec, 5
791 ~y+1=0
Detach, 790, 712
792 ~0=y+1
Sym, 791
793 0=y+1 & ~0=y+1
Join, 788, 792
794 ~[0=x & 0=y+1 & x0=z']
4 Conclusion, 786
795 (0,0,x0) e exp & ~[0=x & 0=y+1 & x0=z']
Join, 66, 794
As Required:
796 (0,0,x0) e q
Detach, 785, 795
Suppose...
797 t e n
Premise
Suppose...
798 ~t=0
Premise
799 ALL(b):ALL(c):[(t,b,c) e q
<=>
(t,b,c) e exp & ~[t=x & b=y+1 & c=z']]
U Spec, 758
800 ALL(c):[(t,0,c) e q
<=>
(t,0,c) e exp & ~[t=x & 0=y+1 & c=z']]
U Spec, 799
801 (t,0,1) e q
<=>
(t,0,1) e exp & ~[t=x & 0=y+1 & 1=z']
U Spec, 800
802 [(t,0,1) e q => (t,0,1) e exp & ~[t=x & 0=y+1 & 1=z']]
&
[(t,0,1) e exp & ~[t=x & 0=y+1 & 1=z'] => (t,0,1) e q]
Iff-And, 801
803 (t,0,1) e q => (t,0,1) e exp & ~[t=x & 0=y+1 & 1=z']
Split, 802
Sufficient:
804 (t,0,1) e exp & ~[t=x & 0=y+1 & 1=z'] => (t,0,1) e q
Split, 802
805 t e n => [~t=0 => (t,0,1) e exp]
U Spec, 97
806 ~t=0 => (t,0,1) e exp
Detach, 805, 797
807 (t,0,1) e exp
Detach, 806, 798
808 t=x & 0=y+1 & 1=z'
Premise
809 t=x
Split, 808
810 0=y+1
Split, 808
811 1=z'
Split, 808
812 y e n => ~y+1=0
U Spec, 5
813 ~y+1=0
Detach, 812, 712
814 ~0=y+1
Sym, 813
815 0=y+1 & ~0=y+1
Join, 810, 814
816 ~[t=x & 0=y+1 & 1=z']
4 Conclusion, 808
817 (t,0,1) e exp & ~[t=x & 0=y+1 & 1=z']
Join, 807, 816
818 (t,0,1) e q
Detach, 804, 817
819 ~t=0 => (t,0,1) e q
4 Conclusion, 798
As Required:
820 ALL(e):[e e n => [~e=0 => (e,0,1) e q]]
4 Conclusion, 797
Prove: ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
Suppose...
821 (t,u,v) e q
Premise
822 ALL(b):ALL(c):[(t,b,c) e q
<=>
(t,b,c) e exp & ~[t=x & b=y+1 & c=z']]
U Spec, 758
823 ALL(c):[(t,u,c) e q
<=>
(t,u,c) e exp & ~[t=x & u=y+1 & c=z']]
U Spec, 822
824 (t,u,v) e q
<=>
(t,u,v) e exp & ~[t=x & u=y+1 & v=z']
U Spec, 823
825 [(t,u,v) e q => (t,u,v) e exp & ~[t=x & u=y+1 & v=z']]
&
[(t,u,v) e exp & ~[t=x & u=y+1 & v=z'] => (t,u,v) e q]
Iff-And, 824
826 (t,u,v) e q => (t,u,v) e exp & ~[t=x & u=y+1 & v=z']
Split, 825
827 (t,u,v) e exp & ~[t=x & u=y+1 & v=z'] => (t,u,v) e q
Split, 825
828 (t,u,v) e exp & ~[t=x & u=y+1 & v=z']
Detach, 826, 821
829 (t,u,v) e exp
Split, 828
830 ~[t=x & u=y+1 & v=z']
Split, 828
831 ALL(b):ALL(c):[(t,b,c) e exp => t e n & b e n & c e n & (t,b,c) e n3]
U Spec, 44
832 ALL(c):[(t,u,c) e exp => t e n & u e n & c e n & (t,u,c) e n3]
U Spec, 831
833 (t,u,v) e exp => t e n & u e n & v e n & (t,u,v) e n3
U Spec, 832
834 t e n & u e n & v e n & (t,u,v) e n3
Detach, 833, 829
835 t e n
Split, 834
836 u e n
Split, 834
837 v e n
Split, 834
838 (t,u,v) e n3
Split, 834
839 ALL(b):ALL(c):[(t,b,c) e q
<=>
(t,b,c) e exp & ~[t=x & b=y+1 & c=z']]
U Spec, 758
840 ALL(c):[(t,u+1,c) e q
<=>
(t,u+1,c) e exp & ~[t=x & u+1=y+1 & c=z']]
U Spec, 839
841 (t,u+1,v*t) e q
<=>
(t,u+1,v*t) e exp & ~[t=x & u+1=y+1 & v*t=z']
U Spec, 840
842 [(t,u+1,v*t) e q => (t,u+1,v*t) e exp & ~[t=x & u+1=y+1 & v*t=z']]
&
[(t,u+1,v*t) e exp & ~[t=x & u+1=y+1 & v*t=z'] => (t,u+1,v*t) e q]
Iff-And, 841
843 (t,u+1,v*t) e q => (t,u+1,v*t) e exp & ~[t=x & u+1=y+1 & v*t=z']
Split, 842
Sufficient:
844 (t,u+1,v*t) e exp & ~[t=x & u+1=y+1 & v*t=z'] => (t,u+1,v*t) e q
Split, 842
845 ALL(b):ALL(c):[(t,b,c) e exp => (t,b+1,c*t) e exp]
U Spec, 155
846 ALL(c):[(t,u,c) e exp => (t,u+1,c*t) e exp]
U Spec, 845
847 (t,u,v) e exp => (t,u+1,v*t) e exp
U Spec, 846
848 (t,u+1,v*t) e exp
Detach, 847, 829
849 t=x & u+1=y+1 & v*t=z'
Premise
850 t=x
Split, 849
851 u+1=y+1
Split, 849
852 v*t=z'
Split, 849
853 v*x=z'
Substitute, 850,
852
854 ALL(b):[u e n & b e n => [u+1=b+1 => u=b]]
U Spec, 4
855 u e n & y e n => [u+1=y+1 => u=y]
U Spec, 854
856 u e n & y e n
Join, 836, 712
857 u+1=y+1 => u=y
Detach, 855, 856
858 u=y
Detach, 857, 851
859 (x,u,v) e exp
Substitute, 850,
829
860 (x,y,v) e exp
Substitute, 858,
859
861 v e n => [(x,y,v) e exp => z=v]
U Spec, 733
862 (x,y,v) e exp => z=v
Detach, 861, 837
863 z=v
Detach, 862, 860
864 z*x=z'
Substitute, 863,
853
865 z'=z*x
Sym, 864
866 z'=z*x & ~z'=z*x
Join, 865, 739
867 ~[t=x & u+1=y+1 & v*t=z']
4 Conclusion, 849
868 (t,u+1,v*t) e exp & ~[t=x & u+1=y+1 & v*t=z']
Join, 848, 867
869 (t,u+1,v*t) e q
Detach, 844, 868
As Required:
870 ALL(e):ALL(f):ALL(g):[(e,f,g) e q => (e,f+1,g*e) e q]
4 Conclusion, 821
871 ALL(b):ALL(c):[(x,b,c) e q
<=>
(x,b,c) e exp & ~[x=x & b=y+1 & c=z']]
U Spec, 758
872 ALL(c):[(x,y+1,c) e q
<=>
(x,y+1,c) e exp & ~[x=x & y+1=y+1 & c=z']]
U Spec, 871
873 (x,y+1,z') e q
<=>
(x,y+1,z') e exp & ~[x=x & y+1=y+1 & z'=z']
U Spec, 872
874 [(x,y+1,z') e q => (x,y+1,z') e exp & ~[x=x & y+1=y+1 & z'=z']]
&
[(x,y+1,z') e exp & ~[x=x & y+1=y+1 & z'=z'] => (x,y+1,z') e q]
Iff-And, 873
875 (x,y+1,z') e q => (x,y+1,z') e exp & ~[x=x & y+1=y+1 & z'=z']
Split, 874
876 (x,y+1,z') e exp & ~[x=x & y+1=y+1 & z'=z'] => (x,y+1,z') e q
Split, 874
877 ~[(x,y+1,z') e exp & ~[x=x & y+1=y+1 & z'=z']] => ~(x,y+1,z') e q
Contra, 875
878 ~~[~(x,y+1,z') e exp | ~~[x=x & y+1=y+1 & z'=z']] => ~(x,y+1,z') e q
DeMorgan, 877
879 ~(x,y+1,z') e exp | ~~[x=x & y+1=y+1 & z'=z'] => ~(x,y+1,z') e q
Rem DNeg, 878
880 ~(x,y+1,z') e exp | x=x & y+1=y+1 & z'=z' => ~(x,y+1,z') e q
Rem DNeg, 879
881 x=x
Reflex
882 y+1=y+1
Reflex
883 z'=z'
Reflex
884 x=x & y+1=y+1
Join, 881, 882
885 x=x & y+1=y+1 & z'=z'
Join, 884, 883
886 ~(x,y+1,z') e exp | x=x & y+1=y+1 & z'=z'
Arb Or, 885
As Required:
887 ~(x,y+1,z') e q
Detach, 880, 886
888 Set''(q)
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e q => e e n & f e n & g e n]
Join, 757, 779
889 (0,0,x0) e q
&
ALL(e):[e e n => [~e=0 => (e,0,1) e q]]
Join, 796, 820
890 (0,0,x0) e q
&
ALL(e):[e e n => [~e=0 => (e,0,1) e q]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e q => (e,f+1,g*e) e q]
Join, 889, 870
891 (0,0,x0) e q
&
ALL(e):[e e n => [~e=0 => (e,0,1) e q]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e q => (e,f+1,g*e) e q]
&
~(x,y+1,z') e q
Join, 890, 887
892 Set''(q)
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e q => e e n & f e n & g e n]
&
[(0,0,x0) e q
&
ALL(e):[e e n => [~e=0 => (e,0,1) e q]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e q => (e,f+1,g*e) e q]
&
~(x,y+1,z') e q]
Join, 888, 891
893 EXIST(d):[Set''(d)
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
&
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
&
~(x,y+1,z') e d]]
E Gen, 892
894 ~(x,y+1,z') e n3 | EXIST(d):[Set''(d)
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => e e n & f e n & g e n]
&
[(0,0,x0) e d
&
ALL(e):[e e n => [~e=0 => (e,0,1) e d]]
&
ALL(e):ALL(f):ALL(g):[(e,f,g) e d => (e,f+1,g*e) e d]
&
~(x,y+1,z') e d]]
Arb Or, 893
895 ~(x,y+1,z') e exp
Detach, 754, 894
896 (x,y+1,z') e exp & ~(x,y+1,z') e exp
Join, 738, 895
897 ~~[(x,y+1,z') e exp => z'=z*x]
4 Conclusion, 735
898 (x,y+1,z') e exp => z'=z*x
Rem DNeg, 897
899 ALL(d):[d e n => [(x,y+1,d) e exp => d=z*x]]
4 Conclusion, 734
900 y+1 e p3 <=> y+1 e n & ALL(c):ALL(d):[(x,y+1,c) e exp & (x,y+1,d) e exp => c=d]
U Spec, 646
901 [y+1 e p3 => y+1 e n &
ALL(c):ALL(d):[(x,y+1,c) e exp & (x,y+1,d) e exp => c=d]]
&
[y+1 e n & ALL(c):ALL(d):[(x,y+1,c) e exp & (x,y+1,d) e exp => c=d] => y+1 e p3]
Iff-And, 900
902 y+1 e p3 => y+1 e n &
ALL(c):ALL(d):[(x,y+1,c) e exp & (x,y+1,d) e exp => c=d]
Split, 901
Sufficient: y+1 e p3
903 y+1 e n & ALL(c):ALL(d):[(x,y+1,c) e exp & (x,y+1,d) e exp => c=d] => y+1 e p3
Split, 901
904 ALL(b):[y e n & b e n => y+b e n]
U Spec, 9
905 y e n & 1 e n => y+1 e n
U Spec, 904
906 y e n & 1 e n
Join, 712, 7
907 y+1 e n
Detach, 905, 906
908 (x,y+1,z') e exp & (x,y+1,z'') e exp
Premise
909 (x,y+1,z') e exp
Split, 908
910 (x,y+1,z'') e exp
Split, 908
911 ALL(b):ALL(c):[(x,b,c) e exp => x e n & b e n & c e n & (x,b,c) e n3]
U Spec, 44
912 ALL(c):[(x,y+1,c) e exp => x e n & y+1 e n & c e n & (x,y+1,c) e n3]
U Spec, 911
913 (x,y+1,z') e exp => x e n & y+1 e n & z' e n & (x,y+1,z') e n3
U Spec, 912
914 x e n & y+1 e n & z' e n & (x,y+1,z') e n3
Detach, 913, 909
915 x e n
Split, 914
916 y+1 e n
Split, 914
917 z' e n
Split, 914
918 (x,y+1,z') e n3
Split, 914
919 z' e n => [(x,y+1,z') e exp => z'=z*x]
U Spec, 899
920 (x,y+1,z') e exp => z'=z*x
Detach, 919, 917
921 z'=z*x
Detach, 920, 909
922 (x,y+1,z'') e exp => x e n & y+1 e n & z'' e n & (x,y+1,z'') e n3
U Spec, 912
923 x e n & y+1 e n & z'' e n & (x,y+1,z'') e n3
Detach, 922, 910
924 x e n
Split, 923
925 y+1 e n
Split, 923
926 z'' e n
Split, 923
927 (x,y+1,z'') e n3
Split, 923
928 z'' e n => [(x,y+1,z'') e exp => z''=z*x]
U Spec, 899
929 (x,y+1,z'') e exp => z''=z*x
Detach, 928, 926
930 z''=z*x
Detach, 929, 910
931 z'=z''
Substitute, 930,
921
932 ALL(c):ALL(d):[(x,y+1,c) e exp & (x,y+1,d) e exp => c=d]
4 Conclusion, 908
933 y+1 e n
&
ALL(c):ALL(d):[(x,y+1,c) e exp & (x,y+1,d) e exp => c=d]
Join, 907, 932
934 y+1 e p3
Detach, 903, 933
935 ALL(b):[b e p3 => b+1 e p3]
4 Conclusion, 706
936 0 e p3 & ALL(b):[b e p3 => b+1 e p3]
Join, 705, 935
937 ALL(b):[b e n => b e p3]
Detach, 657, 936
938 y e n
Premise
939 y e n => y e p3
U Spec, 937
940 y e p3
Detach, 939, 938
941 y e p3 <=> y e n & ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d]
U Spec, 646
942 [y e p3 => y e n &
ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d]]
&
[y e n & ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d] => y e p3]
Iff-And, 941
943 y e p3 => y e n &
ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d]
Split, 942
944 y e n & ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d] => y e p3
Split, 942
945 y e n & ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d]
Detach, 943, 940
946 y e n
Split, 945
947 ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d]
Split, 945
948 ALL(b):[b e n
=>
ALL(c):ALL(d):[(x,b,c) e exp & (x,b,d) e exp => c=d]]
4 Conclusion, 938
949 ALL(a):[a e n
=>
ALL(b):[b e n
=>
ALL(c):ALL(d):[(a,b,c) e exp & (a,b,d) e exp => c=d]]]
4 Conclusion, 642
950 (x,y,z1) e exp & (x,y,z2) e exp
Premise
951 (x,y,z1) e exp
Split, 950
952 (x,y,z2) e exp
Split, 950
953 ALL(b):ALL(c):[(x,b,c) e exp => x e n & b e n & c e n & (x,b,c) e n3]
U Spec, 44
954 ALL(c):[(x,y,c) e exp => x e n & y e n & c e n & (x,y,c) e n3]
U Spec, 953
955 (x,y,z1) e exp => x e n & y e n & z1 e n & (x,y,z1) e n3
U Spec, 954
956 x e n & y e n & z1 e n & (x,y,z1) e n3
Detach, 955, 951
957 x e n
Split, 956
958 y e n
Split, 956
959 z1 e n
Split, 956
960 (x,y,z1) e n3
Split, 956
961 (x,y,z2) e exp => x e n & y e n & z2 e n & (x,y,z2) e n3
U Spec, 954
962 x e n & y e n & z2 e n & (x,y,z2) e n3
Detach, 961, 952
963 x e n
Split, 962
964 y e n
Split, 962
965 z2 e n
Split, 962
966 (x,y,z2) e n3
Split, 962
967 x e n
=>
ALL(b):[b e n
=>
ALL(c):ALL(d):[(x,b,c) e exp & (x,b,d) e exp => c=d]]
U Spec, 949
968 ALL(b):[b e n
=>
ALL(c):ALL(d):[(x,b,c) e exp & (x,b,d) e exp => c=d]]
Detach, 967, 963
969 y e n
=>
ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d]
U Spec, 968
970 ALL(c):ALL(d):[(x,y,c) e exp & (x,y,d) e exp => c=d]
Detach, 969, 964
971 ALL(d):[(x,y,z1) e exp & (x,y,d) e exp => z1=d]
U Spec, 970
972 (x,y,z1) e exp & (x,y,z2) e exp => z1=z2
U Spec, 971
973 z1=z2
Detach, 972, 950
Functionality - Part 3
974 ALL(c1):ALL(c2):ALL(d1):ALL(d2):[(c1,c2,d1) e exp & (c1,c2,d2) e exp => d1=d2]
4 Conclusion, 950
975 ALL(c1):ALL(c2):ALL(d):[(c1,c2,d) e exp => c1 e n & c2 e n & d e n]
&
ALL(a):ALL(b):[a e n & b e n =>
EXIST(c):[c e n & (a,b,c) e exp]]
Join, 175, 337
976 ALL(c1):ALL(c2):ALL(d):[(c1,c2,d) e exp => c1 e n & c2 e n & d e n]
&
ALL(a):ALL(b):[a e n & b e n =>
EXIST(c):[c e n & (a,b,c) e exp]]
&
ALL(c1):ALL(c2):ALL(d1):ALL(d2):[(c1,c2,d1) e exp &
(c1,c2,d2) e exp => d1=d2]
Join, 975, 974
exp is a function!
As Required:
977 ALL(c1):ALL(c2):ALL(d):[c1 e n & c2 e n & d e n => [d=exp(c1,c2)
<=> (c1,c2,d) e exp]]
Detach, 163, 976
978 t e n & u e n
Premise
979 ALL(b):[t e n & b e n =>
EXIST(c):[c e n & (t,b,c) e exp]]
U Spec, 337
980 t e n & u e n =>
EXIST(c):[c e n & (t,u,c) e exp]
U Spec, 979
981 EXIST(c):[c e n & (t,u,c) e exp]
Detach, 980, 978
982 v e n & (t,u,v) e exp
E Spec, 981
983 v e n
Split, 982
984 (t,u,v) e exp
Split, 982
985 ALL(c2):ALL(d):[t e n & c2 e n & d e n => [d=exp(t,c2) <=> (t,c2,d) e exp]]
U Spec, 977
986 ALL(d):[t e n & u e n & d e n => [d=exp(t,u) <=> (t,u,d) e exp]]
U Spec, 985
987 t e n & u e n & v e n => [v=exp(t,u) <=> (t,u,v) e exp]
U Spec, 986
988 t e n & u e n & v e n
Join, 978, 983
989 v=exp(t,u) <=> (t,u,v) e exp
Detach, 987, 988
990 [v=exp(t,u) => (t,u,v) e exp]
&
[(t,u,v) e exp => v=exp(t,u)]
Iff-And, 989
991 v=exp(t,u) => (t,u,v) e exp
Split, 990
992 (t,u,v) e exp => v=exp(t,u)
Split, 990
993 v=exp(t,u)
Detach, 992, 984
994 exp(t,u) e n
Substitute, 993,
983
As Required:
995 ALL(a):ALL(b):[a e n & b e n => exp(a,b) e n]
4 Conclusion, 978
996 ALL(c2):ALL(d):[0 e n & c2 e n & d e n => [d=exp(0,c2) <=> (0,c2,d) e exp]]
U Spec, 977
997 ALL(d):[0 e n & 0 e n & d e n => [d=exp(0,0) <=> (0,0,d) e exp]]
U Spec, 996
998 0 e n & 0 e n & x0 e n => [x0=exp(0,0) <=> (0,0,x0) e exp]
U Spec, 997
999 0 e n & 0 e n
Join, 3, 3
1000 0 e n & 0 e n & x0 e n
Join, 999, 11
1001 x0=exp(0,0) <=> (0,0,x0) e exp
Detach, 998, 1000
1002 [x0=exp(0,0) => (0,0,x0) e exp]
&
[(0,0,x0) e exp => x0=exp(0,0)]
Iff-And, 1001
1003 x0=exp(0,0) => (0,0,x0) e exp
Split, 1002
1004 (0,0,x0) e exp => x0=exp(0,0)
Split, 1002
1005 x0=exp(0,0)
Detach, 1004, 66
As Required:
1006 exp(0,0)=x0
Sym, 1005
1007 t e n
Premise
1008 ~t=0
Premise
1009 t e n => [~t=0 => (t,0,1) e exp]
U Spec, 97
1010 ~t=0 => (t,0,1) e exp
Detach, 1009,
1007
1011 (t,0,1) e exp
Detach, 1010,
1008
1012 ALL(c2):ALL(d):[t e n & c2 e n & d e n => [d=exp(t,c2) <=> (t,c2,d) e exp]]
U Spec, 977
1013 ALL(d):[t e n & 0 e n & d e n => [d=exp(t,0) <=> (t,0,d) e exp]]
U Spec, 1012
1014 t e n & 0 e n & 1 e n => [1=exp(t,0) <=> (t,0,1) e exp]
U Spec, 1013
1015 t e n & 0 e n
Join, 1007, 3
1016 t e n & 0 e n & 1 e n
Join, 1015, 7
1017 1=exp(t,0) <=> (t,0,1) e exp
Detach, 1014,
1016
1018 [1=exp(t,0) => (t,0,1) e exp]
&
[(t,0,1) e exp => 1=exp(t,0)]
Iff-And, 1017
1019 1=exp(t,0) => (t,0,1) e exp
Split, 1018
1020 (t,0,1) e exp => 1=exp(t,0)
Split, 1018
1021 1=exp(t,0)
Detach, 1020,
1011
1022 exp(t,0)=1
Sym, 1021
1023 ~t=0 => exp(t,0)=1
4 Conclusion, 1008
As Required:
1024 ALL(a):[a e n => [~a=0 => exp(a,0)=1]]
4 Conclusion, 1007
1025 t e n & u e n
Premise
1026 t e n
Split, 1025
1027 u e n
Split, 1025
1028 ALL(b):[t e n & b e n =>
EXIST(c):[c e n & (t,b,c) e exp]]
U Spec, 337
1029 t e n & u e n =>
EXIST(c):[c e n & (t,u,c) e exp]
U Spec, 1028
1030 EXIST(c):[c e n & (t,u,c) e exp]
Detach, 1029,
1025
1031 v e n & (t,u,v) e exp
E Spec, 1030
1032 v e n
Split, 1031
1033 (t,u,v) e exp
Split, 1031
1034 ALL(c2):ALL(d):[t e n & c2 e n & d e n => [d=exp(t,c2) <=> (t,c2,d) e exp]]
U Spec, 977
1035 ALL(d):[t e n & u e n & d e n => [d=exp(t,u) <=> (t,u,d) e exp]]
U Spec, 1034
1036 t e n & u e n & v e n => [v=exp(t,u) <=> (t,u,v) e exp]
U Spec, 1035
1037 t e n & u e n & v e n
Join, 1025, 1032
1038 v=exp(t,u) <=> (t,u,v) e exp
Detach, 1036,
1037
1039 [v=exp(t,u) => (t,u,v) e exp]
&
[(t,u,v) e exp => v=exp(t,u)]
Iff-And, 1038
1040 v=exp(t,u) => (t,u,v) e exp
Split, 1039
1041 (t,u,v) e exp => v=exp(t,u)
Split, 1039
1042 v=exp(t,u)
Detach, 1041,
1033
1043 ALL(b):ALL(c):[(t,b,c) e exp => (t,b+1,c*t) e exp]
U Spec, 155
1044 ALL(c):[(t,u,c) e exp => (t,u+1,c*t) e exp]
U Spec, 1043
1045 (t,u,v) e exp => (t,u+1,v*t) e exp
U Spec, 1044
1046 (t,u+1,v*t) e exp
Detach, 1045,
1033
1047 ALL(c2):ALL(d):[t e n & c2 e n & d e n => [d=exp(t,c2) <=> (t,c2,d) e exp]]
U Spec, 977
1048 ALL(d):[t e n & u+1 e n & d e n => [d=exp(t,u+1) <=> (t,u+1,d) e exp]]
U Spec, 1047
1049 t e n & u+1 e n & v*t e n => [v*t=exp(t,u+1) <=> (t,u+1,v*t) e exp]
U Spec, 1048
1050 ALL(b):[u e n & b e n => u+b e n]
U Spec, 9
1051 u e n & 1 e n => u+1 e n
U Spec, 1050
1052 u e n & 1 e n
Join, 1027, 7
1053 u+1 e n
Detach, 1051,
1052
1054 ALL(b):[v e n & b e n => v*b e n]
U Spec, 10
1055 v e n & t e n => v*t e n
U Spec, 1054
1056 v e n & t e n
Join, 1032, 1026
1057 v*t e n
Detach, 1055,
1056
1058 t e n & u+1 e n
Join, 1026, 1053
1059 t e n & u+1 e n & v*t e n
Join, 1058, 1057
1060 v*t=exp(t,u+1) <=> (t,u+1,v*t) e exp
Detach, 1049, 1059
1061 [v*t=exp(t,u+1) => (t,u+1,v*t) e exp]
&
[(t,u+1,v*t) e exp => v*t=exp(t,u+1)]
Iff-And, 1060
1062 v*t=exp(t,u+1) => (t,u+1,v*t) e exp
Split, 1061
1063 (t,u+1,v*t) e exp => v*t=exp(t,u+1)
Split, 1061
1064 v*t=exp(t,u+1)
Detach, 1063,
1046
1065 exp(t,u)*t=exp(t,u+1)
Substitute, 1042,
1064
1066 exp(t,u+1)=exp(t,u)*t
Sym, 1065
1067 ALL(a):ALL(b):[a e n & b e n => exp(a,b+1)=exp(a,b)*a]
4 Conclusion, 1025
1068 ALL(a):ALL(b):[a e n & b e n => exp(a,b) e n]
&
exp(0,0)=x0
Join, 995, 1006
1069 ALL(a):ALL(b):[a e n & b e n => exp(a,b) e n]
&
exp(0,0)=x0
&
ALL(a):[a e n => [~a=0 => exp(a,0)=1]]
Join, 1068, 1024
1070 ALL(a):ALL(b):[a e n & b e n => exp(a,b) e n]
&
exp(0,0)=x0
&
ALL(a):[a e n => [~a=0 => exp(a,0)=1]]
&
ALL(a):ALL(b):[a e n & b e n => exp(a,b+1)=exp(a,b)*a]
Join, 1069, 1067
As Required:
1071 ALL(x0):[x0 e n
=>
EXIST(exp):[ALL(a):ALL(b):[a e n & b e n => exp(a,b) e n]
&
exp(0,0)=x0
&
ALL(a):[a e n => [~a=0 => exp(a,0)=1]]
&
ALL(a):ALL(b):[a e n & b e n => exp(a,b+1)=exp(a,b)*a]]]
4 Conclusion, 11