THEOREM

*******

 

Given:

 

   ALL(a):[a e x <=> a=0 | a=1]   (x = {0, 1}, line 3)

 

   ALL(f):[f e fs <=> ALL(d):[d e x => f(d) e x]]   (Function space fs, line 24)

 

   f(0)=1 & f(1)=0   (line 25)

 

Prove:

 

   f e fs

 

 

PROOF

*****

 

Proposed Function Space Axiom (for functions of 1 variable)

 

1     ALL(a):ALL(b):[Set(a) & EXIST(c):c e a & Set(b) => EXIST(c):[Set(c) & ALL(f):[f e c <=> ALL(d):[d e a => f(d) e b]]]]

      Axiom

 

Define: x   (x = {0, 1}

 

2     Set(x)

      Axiom

 

3     ALL(a):[a e x <=> a=0 | a=1]

      Axiom

 

Apply Function Space Axiom

 

4     ALL(b):[Set(x) & EXIST(c):c e x & Set(b) => EXIST(c):[Set(c) & ALL(f):[f e c <=> ALL(d):[d e x => f(d) e b]]]]

      U Spec, 1

 

5     Set(x) & EXIST(c):c e x & Set(x) => EXIST(c):[Set(c) & ALL(f):[f e c <=> ALL(d):[d e x => f(d) e x]]]

      U Spec, 4

 

Apply definition of x

 

6     0 e x <=> 0=0 | 0=1

      U Spec, 3

 

7     [0 e x => 0=0 | 0=1] & [0=0 | 0=1 => 0 e x]

      Iff-And, 6

 

8     0=0 | 0=1 => 0 e x

      Split, 7

 

9     0=0

      Reflex

 

10   0=0 | 0=1

      Arb Or, 9

 

11   0 e x

      Detach, 8, 10

 

12   1 e x <=> 1=0 | 1=1

      U Spec, 3

 

13   [1 e x => 1=0 | 1=1] & [1=0 | 1=1 => 1 e x]

      Iff-And, 12

 

14   1=0 | 1=1 => 1 e x

      Split, 13

 

15   1=1

      Reflex

 

16   1=0 | 1=1

      Arb Or, 15

 

17   1 e x

      Detach, 14, 16

 

18   EXIST(c):c e x

      E Gen, 11

 

19   Set(x) & EXIST(c):c e x

      Join, 2, 18

 

20   Set(x) & EXIST(c):c e x & Set(x)

      Join, 19, 2

 

21   EXIST(c):[Set(c) & ALL(f):[f e c <=> ALL(d):[d e x => f(d) e x]]]

      Detach, 5, 20

 

22   Set(fs) & ALL(f):[f e fs <=> ALL(d):[d e x => f(d) e x]]

      E Spec, 21

 

 

Define: fs  (Function space on x)

 

23   Set(fs)

      Split, 22

 

24   ALL(f):[f e fs <=> ALL(d):[d e x => f(d) e x]]

      Split, 22

 

   

    Prove: ALL(f):[f(0)=1 & f(1)=0 => f e fs]

   

    Suppose...

 

      25   f(0)=1 & f(1)=0

            Premise

 

      26   f(0)=1

            Split, 25

 

      27   f(1)=0

            Split, 25

 

      28   f e fs <=> ALL(d):[d e x => f(d) e x]

            U Spec, 24

 

      29   [f e fs => ALL(d):[d e x => f(d) e x]]

         & [ALL(d):[d e x => f(d) e x] => f e fs]

            Iff-And, 28

 

      30   f e fs => ALL(d):[d e x => f(d) e x]

            Split, 29

 

    Sufficient: For f e fs

 

      31   ALL(d):[d e x => f(d) e x] => f e fs

            Split, 29

 

        

         Prove: ALL(d):[d e x => f(d) e x]

        

         Suppose...

 

            32   t e x

                  Premise

 

            33   t e x <=> t=0 | t=1

                  U Spec, 3

 

            34   [t e x => t=0 | t=1] & [t=0 | t=1 => t e x]

                  Iff-And, 33

 

            35   t e x => t=0 | t=1

                  Split, 34

 

         Two cases to consider:

 

            36   t=0 | t=1

                  Detach, 35, 32

 

            

             Case 1

            

             Prove: t=0 => f(t) e x

            

             Suppose...

 

                  37   t=0

                        Premise

 

                  38   f(0) e x

                        Substitute, 26, 17

 

                  39   f(t) e x

                        Substitute, 37, 38

 

         As Required:

 

            40   t=0 => f(t) e x

                  4 Conclusion, 37

 

             Case 2

            

             Prove: t=1 => f(t) e x

            

             Suppose...

 

                  41   t=1

                        Premise

 

                  42   f(1) e x

                        Substitute, 27, 11

 

                  43   f(t) e x

                        Substitute, 41, 42

 

         As Required:

 

            44   t=1 => f(t) e x

                  4 Conclusion, 41

 

            45   [t=0 => f(t) e x] & [t=1 => f(t) e x]

                  Join, 40, 44

 

            46   f(t) e x

                  Cases, 36, 45

 

    As Required:

 

      47   ALL(d):[d e x => f(d) e x]

            4 Conclusion, 32

 

      48   f e fs

            Detach, 31, 47

 

As Required:

 

49   ALL(f):[f(0)=1 & f(1)=0 => f e fs]

      4 Conclusion, 25