THEOREM

*******

 

For any family of sets there exists a union and intersection of that family. If that family is empty, then so are its union and intersection.

 

     ALL(fam):[Set(fam) & ALL(a):[a e fam => Set(a)]

 

     => EXIST(ufam):EXIST(ifam):[Set(ufam) & ALL(b):[b e ufam <=> EXIST(c):[c e fam & b e c]]

 

     & [Set(ifam) & ALL(a):[a e ifam <=> a e ufam & ALL(b):[b e fam => a e b]]]

 

     & [ALL(a):~a e fam  =>  ALL(a):~a e ufam  &  ALL(a):~a e ifam]]]

 

Where

 

     fam  = family of sets (possibly empty)

     ufam = union of f

     ifam = intersection of f

 

This proof makes use of basic set theory: Arbitrary Union Axiom (line 4), Subset Axiom (line 10)

 

By Dan Christensen

 

2024-06-06

2024-06-14

 

http://www.dcproof.com

 

   

    Let fam be a family of sets (possibly empty)

 

      1     Set(fam) & ALL(a):[a e fam => Set(a)]

            Premise

 

      2     Set(fam)

            Split, 1

 

      3     ALL(a):[a e fam => Set(a)]

            Split, 1

 

    Construct ufam  (union of fam)

   

    Apply Union Axiom

 

      4     ALL(f):[Set(f) & ALL(a):[a e f => Set(a)]

         => EXIST(a):[Set(a) & ALL(b):[b e a <=> EXIST(c):[c e f & b e c]]]]

            Arb Union

 

    Define: ufam  (union of fam)

 

      7     Set(ufam) & ALL(b):[b e ufam <=> EXIST(c):[c e fam & b e c]]

            E Spec, 6

 

      8     Set(ufam)

            Split, 7

 

      9     ALL(b):[b e ufam <=> EXIST(c):[c e fam & b e c]]

            Split, 7

 

    Construct ifam  (intersection of fam)

   

    Apply Subset Axiom

 

      10   EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e ufam & ALL(b):[b e fam => a e b]]]

            Subset, 8

 

    Define: ifam  (intersection of fam)

 

      11   Set(ifam) & ALL(a):[a e ifam <=> a e ufam & ALL(b):[b e fam => a e b]]

            E Spec, 10

 

      12   Set(ifam)

            Split, 11

 

      13   ALL(a):[a e ifam <=> a e ufam & ALL(b):[b e fam => a e b]]

            Split, 11

 

         Prove: ALL(a):~a e fam  =>  ALL(a):~a e fam  &  ALL(a):~a e ufam

        

         Suppose...

 

            14   ALL(a):~a e fam

                  Premise

 

             Prove: ~EXIST(a):a e ufam

            

             Suppose to the contrary...

 

                  15   x e ufam

                        Premise

 

                  20   y e fam & x e y

                        E Spec, 19

 

                  21   y e fam

                        Split, 20

 

         As Required:

 

            24   ~EXIST(a):a e ufam

                  4 Conclusion, 15

 

         ufam (the union of fam) is empty

 

            26   ALL(a):~a e ufam

                  Rem DNeg, 25

 

             Prove: ~EXIST(a):a e ifam

            

             Suppose to the contrary...

 

                  27   x e ifam

                        Premise

 

         As Required:

 

            35   ~EXIST(a):a e ifam

                  4 Conclusion, 27

 

         ifam (the intersection of fam) is empty

 

            37   ALL(a):~a e ifam

                  Rem DNeg, 36

 

    As Required:

 

      39   ALL(a):~a e fam

         => ALL(a):~a e ufam & ALL(a):~a e ifam

            4 Conclusion, 14

 

As Required:

 

42   ALL(fam):[Set(fam) & ALL(a):[a e fam => Set(a)]

    => EXIST(ufam):EXIST(ifam):[Set(ufam) & ALL(b):[b e ufam <=> EXIST(c):[c e fam & b e c]]

    & [Set(ifam) & ALL(a):[a e ifam <=> a e ufam & ALL(b):[b e fam => a e b]]]

    & [ALL(a):~a e fam

    => ALL(a):~a e ufam & ALL(a):~a e ifam]]]

      4 Conclusion, 1