Proposed Resolution of The Liar Paradox

***************************************

 

Here, we argue, using elementary set theory, that "This sentence is false" (the so-called Liar sentence) is neither a true nor a false sentence. It can, however, be classed as a sentence of "indeterminate truth value." Other examples of such sentences include all questions and instructions.

 

THEOREM

*******

 

     ALL(s):ALL(t):ALL(f):ALL(m):[Set(s) & Set(t) & Set(f) & Set(m)

 

     => [ALL(a):[a e t => a e s]  (Subsets of s)

     & ALL(a):[a e f => a e s]

     & ALL(a):[a e m => a e s]

 

     & ALL(a):[a e s => [a e t | a e f | a e m] & ~[a e t & a e f] & ~[a e t & a e m] & ~[a e f & a e m]]  (Trichotomy)

 

     => ALL(b):[b e s => [[b e t <=> b e f] => b e m]]]]

 

Where we can interpret:

 

     s = a set of sentences

     t = the subset of true sentences in s

     f = the subset of false sentence in s

     m = the set sentences "of indeterminate truth value") in s

 

Notation: '|' = OR-operator

 

 

Dan Christensen

2023-07-23

2023-09-17

http://www.dcproof.com

 

 

PROOF

*****

 

    Let s, t, f, m be arbitrary sets

 

      1     Set(s) & Set(t) & Set(f) & Set(m)

            Premise

 

      2     Set(s)

            Split, 1

 

      3     Set(t)

            Split, 1

 

      4     Set(f)

            Split, 1

 

      5     Set(m)

            Split, 1

 

        

         Suppose t, f and m are subsets of s on which the trichotomy rules hold.

        

         (See formal proof of the existence of such trichotomies on ANY set here.)

 

            6     ALL(a):[a e t => a e s]

             & ALL(a):[a e f => a e s]

             & ALL(a):[a e m => a e s]

             & ALL(a):[a e s => [a e t | a e f | a e m] & ~[a e t & a e f] & ~[a e t & a e m] & ~[a e f & a e m]]

                  Premise

 

         Trichotomy rules:

 

            7     ALL(a):[a e s => [a e t | a e f | a e m] & ~[a e t & a e f] & ~[a e t & a e m] & ~[a e f & a e m]]

                  Split, 6

 

            

             Let x be the Liar sentence

            

             Suppose...

 

                  8     x e s

                        Premise

 

             Apply the trichotomy rule for x

 

                  9     x e s => [x e t | x e f | x e m] & ~[x e t & x e f] & ~[x e t & x e m] & ~[x e f & x e m]

                        U Spec, 7

 

                  10   [x e t | x e f | x e m] & ~[x e t & x e f] & ~[x e t & x e m] & ~[x e f & x e m]

                        Detach, 9, 8

 

                  11   x e t | x e f | x e m

                        Split, 10

 

                  12   ~[x e t & x e f]

                        Split, 10

 

                

                 Suppose, as is usually done, that the Liar sentence is a true sentence if and only if it is

                 a false sentence.

 

                        13   x e t <=> x e f

                              Premise

 

                        14   [x e t => x e f] & [x e f => x e t]

                              Iff-And, 13

 

                        15   x e t => x e f

                              Split, 14

 

                        16   x e f => x e t

                              Split, 14

 

                     

                      Prove x is not a true sentence

                     

                      Suppose to the contrary...

 

                              17   x e t

                                    Premise

 

                              18   x e f

                                    Detach, 15, 17

 

                              19   ~~[x e t => ~x e f]

                                    Imply-And, 12

 

                              20   x e t => ~x e f

                                    Rem DNeg, 19

 

                              21   ~x e f

                                    Detach, 20, 17

 

                      Obtain the contradiction:

 

                              22   x e f & ~x e f

                                    Join, 18, 21

 

                 As Required:

 

                        23   ~x e t

                              4 Conclusion, 17

 

                     

                      Prove x is not a false sentence

                     

                      Suppose to the contrary...

 

                              24   x e f

                                    Premise

 

                              25   x e t

                                    Detach, 16, 24

 

                              26   ~~[x e t => ~x e f]

                                    Imply-And, 12

 

                              27   x e t => ~x e f

                                    Rem DNeg, 26

 

                              28   ~x e f

                                    Detach, 27, 25

 

                      Obtain the contradiction:

 

                              29   x e f & ~x e f

                                    Join, 24, 28

 

                 As Required:

 

                        30   ~x e f

                              4 Conclusion, 24

 

                 Prove that x must be sentence of indeterminate truth value

                

                 Apply the trichotomy rule

 

                        31   ~[x e t | x e f] => x e m

                              Imply-Or, 11

 

                        32   ~~[~x e t & ~x e f] => x e m

                              DeMorgan, 31

 

                        33   ~x e t & ~x e f => x e m

                              Rem DNeg, 32

 

                        34   ~x e t & ~x e f

                              Join, 23, 30

 

                 x is a sentence of indeterminate truth value

 

                        35   x e m

                              Detach, 33, 34

 

             As Required:

 

                  36   [x e t <=> x e f] => x e m

                        4 Conclusion, 13

 

         As Required:

 

            37   ALL(b):[b e s => [[b e t <=> b e f] => b e m]]

                  4 Conclusion, 8

 

    As Required:

 

      38   ALL(a):[a e t => a e s]

         & ALL(a):[a e f => a e s]

         & ALL(a):[a e m => a e s]

         & ALL(a):[a e s => [a e t | a e f | a e m] & ~[a e t & a e f] & ~[a e t & a e m] & ~[a e f & a e m]]

         => ALL(b):[b e s => [[b e t <=> b e f] => b e m]]

            4 Conclusion, 6

 

As Required:

 

39   ALL(s):ALL(t):ALL(f):ALL(m):[Set(s) & Set(t) & Set(f) & Set(m)

    => [ALL(a):[a e t => a e s]

    & ALL(a):[a e f => a e s]

    & ALL(a):[a e m => a e s]

    & ALL(a):[a e s => [a e t | a e f | a e m] & ~[a e t & a e f] & ~[a e t & a e m] & ~[a e f & a e m]]

    => ALL(b):[b e s => [[b e t <=> b e f] => b e m]]]]

      4 Conclusion, 1