THEOREM
*******
The power set of the natural numbers is not countable.
OUTLINE
*******
Let pn be the power set of the set of natural numbers n.
By Lemma 5, there can exist no injection from pn to n.
By definition, pn is not countable .
(This proof was written with the aid of the author's DC Proof 2.0 software available at http://www.dcproof.com )
PEANO'S AXIOMS
**************
1 Set(n)
Axiom
2 0 e n
Axiom
3 ALL(a):[a e n => next(a) e n]
Axiom
4 ALL(a):ALL(b):[a e n & b e n => [next(a)=next(b) => a=b]]
Axiom
5 ALL(a):[a e n => ~next(a)=0]
Axiom
6 ALL(a):[Set(a) & ALL(b):[b e a => b e n]
=> [0 e a & ALL(b):[b e a => next(b) e a]
=> ALL(b):[b e n => b e a]]]
Axiom
Construct the power set of n
Apply the Power Set axiom
7 ALL(a):[Set(a) => EXIST(b):[Set(b)
& ALL(c):[c e b <=> Set(c) & ALL(d):[d e c => d e a]]]]
Power Set
8 Set(n) => EXIST(b):[Set(b)
& ALL(c):[c e b <=> Set(c) & ALL(d):[d e c => d e n]]]
U Spec, 7
9 EXIST(b):[Set(b)
& ALL(c):[c e b <=> Set(c) & ALL(d):[d e c => d e n]]]
Detach, 8, 1
10 Set(pn)
& ALL(c):[c e pn <=> Set(c) & ALL(d):[d e c => d e n]]
E Spec, 9
Define: pn (the power set of n)
**********
11 Set(pn)
Split, 10
12 ALL(c):[c e pn <=> Set(c) & ALL(d):[d e c => d e n]]
Split, 10
Define: Countable
*****************
A set x is countable if and only if there exists an injective (one-to-one) mapping
of x to the set of natural numbers.
13 ALL(a):[Countable(a) <=> EXIST(f):[ALL(b):[b e a => f(b) e n] & Injection(f,a,n)]]
Axiom
PREVIOUS RESULT (with link to proof)
***************
Lemma 5: Proof
Suppose ps is the power set of s.
Then there can be no injective (one-to-one) mapping of ps to s.
14 ALL(s):ALL(ps):[Set(s)
& Set(ps)
& ALL(c):[c e ps <=> Set(c) & ALL(d):[d e c => d e s]]
=> ~EXIST(f):[ALL(c):[c e ps => f(c) e s] & Injection(f,ps,s)]]
Axiom
PROOF OF THEOREM
****************
Apply Lemma 5
15 ALL(ps):[Set(n)
& Set(ps)
& ALL(c):[c e ps <=> Set(c) & ALL(d):[d e c => d e n]]
=> ~EXIST(f):[ALL(c):[c e ps => f(c) e n] & Injection(f,ps,n)]]
U Spec, 14
16 Set(n)
& Set(pn)
& ALL(c):[c e pn <=> Set(c) & ALL(d):[d e c => d e n]]
=> ~EXIST(f):[ALL(c):[c e pn => f(c) e n] & Injection(f,pn,n)]
U Spec, 15
17 Set(n) & Set(pn)
Join, 1, 11
18 Set(n) & Set(pn)
& ALL(c):[c e pn <=> Set(c) & ALL(d):[d e c => d e n]]
Join, 17, 12
From Lemma 5, we have...
19 ~EXIST(f):[ALL(c):[c e pn => f(c) e n] & Injection(f,pn,n)]
Detach, 16, 18
Apply definition of Countable
20 Countable(pn) <=> EXIST(f):[ALL(b):[b e pn => f(b) e n] & Injection(f,pn,n)]
U Spec, 13
21 [Countable(pn) => EXIST(f):[ALL(b):[b e pn => f(b) e n] & Injection(f,pn,n)]]
& [EXIST(f):[ALL(b):[b e pn => f(b) e n] & Injection(f,pn,n)] => Countable(pn)]
Iff-And, 20
22 Countable(pn) => EXIST(f):[ALL(b):[b e pn => f(b) e n] & Injection(f,pn,n)]
Split, 21
23 EXIST(f):[ALL(b):[b e pn => f(b) e n] & Injection(f,pn,n)] => Countable(pn)
Split, 21
Sufficient: For ~Countable(pn)
24 ~EXIST(f):[ALL(b):[b e pn => f(b) e n] & Injection(f,pn,n)] => ~Countable(pn)
Contra, 22
As Required: pn is not countable
25 ~Countable(pn)
Detach, 24, 19