LEMMA 5

*******

 

Suppose ps be the power set of s.

Then there exists no injective f: ps --> s.

 

(This proof was written with the aid of author's DC Proof 2.0 software available at http://www.dcproof.com )

 

OUTLINE

*******

 

Suppose to the contrary that there exists injective f: ps --> s.

By Lemma 4, there would then exist surjective g: s --> ps.

This contradicts Lemma 3 (Cantor's Theorem).

 

 

DEFINITIONS

***********

 

Define: Injection

 

1     ALL(f):ALL(a):ALL(b):[Injection(f,a,b) <=> ALL(c):ALL(d):[c e a & d e a => [f(c)=f(d) => c=d]]]

      Axiom

 

 

Define: Surjection

 

2     ALL(f):ALL(a):ALL(b):[Surjection(f,a,b) <=> ALL(c):[c e b => EXIST(d):[d e a & f(d)=c]]]

      Axiom

 

 

PREVIOUS RESULTS (with links to proofs)

****************

 

Lemma 4:  Proof

 

Suppose we have an injective (one-to-one) function mapping of non-empty set x to set y.

Then there exists a surjective (onto) function mapping y to x.

 

3     ALL(a):ALL(b):ALL(f1):[Set(a)

     & Set(b)

     & EXIST(c):c e a

     & ALL(c):[c e a => f1(c) e b]

     & Injection(f1,a,b)

     => EXIST(f2):[ALL(c):[c e b => f2(c) e a] & Surjection(f2,b,a)]]

      Axiom

 

 

Lemma 3: (Cantor's Theorem)  Proof

 

Suppose ps is the power set of s.

Then there exists no surjective (onto) function mapping s to ps.

 

4     ALL(s):ALL(p):[Set(s)

     & Set(p)

     & ALL(c):[c e p <=> Set(c) & ALL(d):[d e c => d e s]]

     => ALL(f):[ALL(a):[a e s => f(a) e p] => ~Surjection(f,s,p)]]

      Axiom

 

    

     PROOF OF LEMMA 5

     ****************

    

     Suppose ps is the power set of s

 

      5     Set(s)

          & Set(ps)

          & ALL(c):[c e ps <=> Set(c) & ALL(d):[d e c => d e s]]

            Premise

 

      6     Set(s)

            Split, 5

 

      7     Set(ps)

            Split, 5

 

      8     ALL(c):[c e ps <=> Set(c) & ALL(d):[d e c => d e s]]

            Split, 5

 

         

          Prove there exists no injective (one-to-one) function f mapping ps to s.

         

          Suppose to the contrary...

 

            9     EXIST(f):[ALL(c):[c e ps => f(c) e s] & Injection(f,ps,s)]

                  Premise

 

            10    ALL(c):[c e ps => f(c) e s] & Injection(f,ps,s)

                  E Spec, 9

 

         

          Define: f

 

            11    ALL(c):[c e ps => f(c) e s]

                  Split, 10

 

            12    Injection(f,ps,s)

                  Split, 10

 

         

          To apply Lemma 2, we must show that ps is non-empty. We will show that the empty set is itself an

          element of ps.

         

          Construct phi (the empty set).

         

          Apply the Subset Axiom.

 

            13    EXIST(sub):[Set(sub) & ALL(a):[a e sub <=> a e s & ~a e s]]

                  Subset, 6

 

            14    Set(phi) & ALL(a):[a e phi <=> a e s & ~a e s]

                  E Spec, 13

 

         

          Define: phi

 

            15    Set(phi)

                  Split, 14

 

            16    ALL(a):[a e phi <=> a e s & ~a e s]

                  Split, 14

 

         

          Prove: phi e ps  (ps is not empty)

         

          Apply definition of ps

 

            17    phi e ps <=> Set(phi) & ALL(d):[d e phi => d e s]

                  U Spec, 8

 

            18    [phi e ps => Set(phi) & ALL(d):[d e phi => d e s]]

              & [Set(phi) & ALL(d):[d e phi => d e s] => phi e ps]

                  Iff-And, 17

 

            19    phi e ps => Set(phi) & ALL(d):[d e phi => d e s]

                  Split, 18

 

          Sufficient: For phi e ps

 

            20    Set(phi) & ALL(d):[d e phi => d e s] => phi e ps

                  Split, 18

 

             

              Prove: ~EXIST(a):a e phi

             

              Suppose to the contrary...

 

                  21    x e phi

                        Premise

 

              Apply defintion of phi

 

                  22    x e phi <=> x e s & ~x e s

                        U Spec, 16

 

                  23    [x e phi => x e s & ~x e s]

                   & [x e s & ~x e s => x e phi]

                        Iff-And, 22

 

                  24    x e phi => x e s & ~x e s

                        Split, 23

 

                  25    x e s & ~x e s => x e phi

                        Split, 23

 

                  26    x e s & ~x e s

                        Detach, 24, 21

 

          As Required:

 

            27    ~EXIST(a):a e phi

                  4 Conclusion, 21

 

          Changing quantfier...

 

            28    ~~ALL(a):~a e phi

                  Quant, 27

 

          Alternatively...

 

            29    ALL(a):~a e phi

                  Rem DNeg, 28

 

             

              Prove phi is a subset of s

             

              Suppose...

 

                  30    x e phi

                        Premise

 

                  31    ~x e phi

                        U Spec, 29

 

                  32    ~~x e phi => x e s

                        Arb Cons, 31

 

                  33    x e phi => x e s

                        Rem DNeg, 32

 

                  34    x e s

                        Detach, 33, 30

 

          As Required:

 

            35    ALL(d):[d e phi => d e s]

                  4 Conclusion, 30

 

            36    Set(phi) & ALL(d):[d e phi => d e s]

                  Join, 15, 35

 

            37    phi e ps

                  Detach, 20, 36

 

          As Required:

         

          ps is non-empty

 

            38    EXIST(a):a e ps

                  E Gen, 37

 

         

          Prove g must be a surjection mapping s to ps

         

          Apply Lemma 2

 

            39    ALL(b):ALL(f1):[Set(ps)

              & Set(b)

              & EXIST(c):c e ps

              & ALL(c):[c e ps => f1(c) e b]

              & Injection(f1,ps,b)

              => EXIST(f2):[ALL(c):[c e b => f2(c) e ps] & Surjection(f2,b,ps)]]

                  U Spec, 3

 

            40    ALL(f1):[Set(ps)

              & Set(s)

              & EXIST(c):c e ps

              & ALL(c):[c e ps => f1(c) e s]

              & Injection(f1,ps,s)

              => EXIST(f2):[ALL(c):[c e s => f2(c) e ps] & Surjection(f2,s,ps)]]

                  U Spec, 39

 

            41    Set(ps)

              & Set(s)

              & EXIST(c):c e ps

              & ALL(c):[c e ps => f(c) e s]

              & Injection(f,ps,s)

              => EXIST(f2):[ALL(c):[c e s => f2(c) e ps] & Surjection(f2,s,ps)]

                  U Spec, 40

 

            42    Set(ps) & Set(s)

                  Join, 7, 6

 

            43    Set(ps) & Set(s) & EXIST(a):a e ps

                  Join, 42, 38

 

            44    Set(ps) & Set(s) & EXIST(a):a e ps

              & ALL(c):[c e ps => f(c) e s]

                  Join, 43, 11

 

            45    Set(ps) & Set(s) & EXIST(a):a e ps

              & ALL(c):[c e ps => f(c) e s]

              & Injection(f,ps,s)

                  Join, 44, 12

 

            46    EXIST(f2):[ALL(c):[c e s => f2(c) e ps] & Surjection(f2,s,ps)]

                  Detach, 41, 45

 

            47    ALL(c):[c e s => g(c) e ps] & Surjection(g,s,ps)

                  E Spec, 46

 

            48    ALL(c):[c e s => g(c) e ps]

                  Split, 47

 

          As Required:

         

          g is a surjection mapping s to ps

 

            49    Surjection(g,s,ps)

                  Split, 47

 

         

          Prove: ~Surjection(g,s,ps) to obtain a contradiction

         

          Apply Lemma 3

 

            50    ALL(p):[Set(s)

              & Set(p)

              & ALL(c):[c e p <=> Set(c) & ALL(d):[d e c => d e s]]

              => ALL(f):[ALL(a):[a e s => f(a) e p] => ~Surjection(f,s,p)]]

                  U Spec, 4

 

            51    Set(s)

               & Set(ps)

              & ALL(c):[c e ps <=> Set(c) & ALL(d):[d e c => d e s]]

              => ALL(f):[ALL(a):[a e s => f(a) e ps] => ~Surjection(f,s,ps)]

                  U Spec, 50

 

            52    ALL(f):[ALL(a):[a e s => f(a) e ps] => ~Surjection(f,s,ps)]

                  Detach, 51, 5

 

            53    ALL(a):[a e s => g(a) e ps] => ~Surjection(g,s,ps)

                  U Spec, 52

 

          As Required:

 

            54    ~Surjection(g,s,ps)

                  Detach, 53, 48

 

          Obtain contradiction...

 

            55    Surjection(g,s,ps) & ~Surjection(g,s,ps)

                  Join, 49, 54

 

     As Required:

 

      56    ~EXIST(f):[ALL(c):[c e ps => f(c) e s] & Injection(f,ps,s)]

            4 Conclusion, 9

 

As Required:

 

57    ALL(s):ALL(ps):[Set(s)

     & Set(ps)

     & ALL(c):[c e ps <=> Set(c) & ALL(d):[d e c => d e s]]

     => ~EXIST(f):[ALL(c):[c e ps => f(c) e s] & Injection(f,ps,s)]]

      4 Conclusion, 5