THEOREM

*******

 

For any set s and binary predicate Q, we have: EXIST(x):[x e s => Q(x,s)]

 

Prove: ALL(s):[Set(s) => EXIST(x):[x e s => Q(x,s)]]

 

 

This formal proof was written and machine-verified with the aid of the author's DC Proof 2.0 software available at http://www.dcproof.com

 

 

PREVIOUS RESULT

***************

 

Every set must exclude something (from the Paradox of the Universal Set)  Formal Proof

 

1     ALL(s):[Set(s) => EXIST(a):~a e s]

      Axiom

 

    

     PROOF

     *****

    

     Let s be an arbitrary set

 

      2     Set(s)

            Premise

 

     Apply previous result for set s

 

      3     Set(s) => EXIST(a):~a e s

            U Spec, 1

 

      4     EXIST(a):~a e s

            Detach, 3, 2

 

     Introduce x

 

     Apply Existential Specification Rule

 

      5     ~x e s

            E Spec, 4

 

     Introduce arbitrary binary predicate Q(x,s)

 

     Apply Arbitrary-OR Rule  ('|' is the OR-operator)

 

      6     ~x e s | Q(x,s)

            Arb Or, 5

 

     Apply Imply-OR Rule

 

      7     ~~x e s => Q(x,s)

            Imply-Or, 6

 

     Remove double negation

 

      8     x e s => Q(x,s)

            Rem DNeg, 7

 

Apply Conclusion Rule

 

As Required:

 

9     ALL(s):[Set(s) => EXIST(x):[x e s => Q(x,s)]]

      4 Conclusion, 2