THEOREM 4

*********

 

Let null be an empty set. Let unull be its union. Then unull=null.

 

 

This machine-verified formal proof was written with the aid of the author's DC Proof 2.0 available at http://www.dcproof.com

 

 

LINKS TO PREVIOUS RESULTS

*************************

 

From Theorem 1, we know that every set has an empty subset.

 

From Theorem 3, we know that every empty set can be expressed

as a family of sets, and that there exists the union of that family.

 

   

    PROOF

    *****

   

    Suppose...

 

      1     Set(null) & ALL(a):~a e null

         & ALL(a):[a e null => Set(a)]

         & Set(unull) & ALL(b):[b e unull <=> EXIST(c):[c e null & b e c]]

            Premise

 

      2     Set(null)

            Split, 1

 

      3     ALL(a):~a e null

            Split, 1

 

      4     ALL(a):[a e null => Set(a)]

            Split, 1

 

      5     Set(unull)

            Split, 1

 

      6     ALL(b):[b e unull <=> EXIST(c):[c e null & b e c]]

            Split, 1

 

    Apply Set Equality Axiom

 

      7     ALL(a):ALL(b):[Set(a) & Set(b) => [a=b <=> ALL(c):[c e a <=> c e b]]]

            Set Equality

 

      8     ALL(b):[Set(unull) & Set(b) => [unull=b <=> ALL(c):[c e unull <=> c e b]]]

            U Spec, 7

 

      9     Set(unull) & Set(null) => [unull=null <=> ALL(c):[c e unull <=> c e null]]

            U Spec, 8

 

      10   Set(unull) & Set(null)

            Join, 5, 2

 

      11   unull=null <=> ALL(c):[c e unull <=> c e null]

            Detach, 9, 10

 

      12   [unull=null => ALL(c):[c e unull <=> c e null]]

         & [ALL(c):[c e unull <=> c e null] => unull=null]

            Iff-And, 11

 

      13   unull=null => ALL(c):[c e unull <=> c e null]

            Split, 12

 

    Sufficient: For unull=null

 

      14   ALL(c):[c e unull <=> c e null] => unull=null

            Split, 12

 

         '=>'

        

         Prove: ALL(c):[c e unull => c e null]

        

         Suppose...

 

            15   x e unull

                  Premise

 

         Apply definition of unull

 

            16   x e unull <=> EXIST(c):[c e null & x e c]

                  U Spec, 6

 

            17   [x e unull => EXIST(c):[c e null & x e c]]

             & [EXIST(c):[c e null & x e c] => x e unull]

                  Iff-And, 16

 

            18   x e unull => EXIST(c):[c e null & x e c]

                  Split, 17

 

            19   EXIST(c):[c e null & x e c] => x e unull

                  Split, 17

 

            20   EXIST(c):[c e null & x e c]

                  Detach, 18, 15

 

            21   y e null & x e y

                  E Spec, 20

 

            22   y e null

                  Split, 21

 

            23   x e y

                  Split, 21

 

         Apply definiton of null

 

            24   ~y e null

                  U Spec, 3

 

            25   ~y e null => x e null

                  Arb Cons, 22

 

            26   x e null

                  Detach, 25, 24

 

    As Required:

 

      27   ALL(c):[c e unull => c e null]

            4 Conclusion, 15

 

         '<='

        

         Prove: ALL(c):[c e null => c e unull]

        

         Suppose...

 

            28   x e null

                  Premise

 

         Apply definition of null

 

            29   ~x e null

                  U Spec, 3

 

            30   ~x e null => x e unull

                  Arb Cons, 28

 

            31   x e unull

                  Detach, 30, 29

 

    As Required:

 

      32   ALL(c):[c e null => c e unull]

            4 Conclusion, 28

 

    Joining results...

 

      33   ALL(c):[[c e unull => c e null] & [c e null => c e unull]]

            Join, 27, 32

 

      34   ALL(c):[c e unull <=> c e null]

            Iff-And, 33

 

    As Required:

 

      35   unull=null

            Detach, 14, 34

 

As Required:

 

36   ALL(null):ALL(unull):[Set(null) & ALL(a):~a e null

    & ALL(a):[a e null => Set(a)]

    & Set(unull) & ALL(b):[b e unull <=> EXIST(c):[c e null & b e c]]

    => unull=null]

      4 Conclusion, 1