THEOREM 4
*********
Let null be an empty set. Let unull be its union. Then unull=null.
This machine-verified formal
proof was written with the aid of the author's DC Proof 2.0 available at http://www.dcproof.com
LINKS TO PREVIOUS RESULTS
*************************
From Theorem 1, we know that every set has an empty subset.
From Theorem 3, we know that every empty set can be expressed
as a family of sets, and that there
exists the union of that family.
PROOF
*****
Suppose...
1 Set(null) & ALL(a):~a e null
&
ALL(a):[a e null => Set(a)]
&
Set(unull) & ALL(b):[b e unull <=>
EXIST(c):[c e null & b e c]]
Premise
2 Set(null)
Split, 1
3 ALL(a):~a e null
Split, 1
4 ALL(a):[a e null => Set(a)]
Split, 1
5 Set(unull)
Split, 1
6 ALL(b):[b e unull <=> EXIST(c):[c e null & b e c]]
Split, 1
Apply Set Equality Axiom
7 ALL(a):ALL(b):[Set(a) & Set(b) =>
[a=b <=> ALL(c):[c e a <=> c e b]]]
Set Equality
8 ALL(b):[Set(unull) & Set(b)
=> [unull=b <=> ALL(c):[c e unull <=> c e b]]]
U Spec, 7
9 Set(unull) & Set(null) => [unull=null <=> ALL(c):[c e unull <=> c e null]]
U Spec, 8
10 Set(unull) & Set(null)
Join, 5, 2
11 unull=null <=> ALL(c):[c e unull <=> c e null]
Detach, 9, 10
12 [unull=null => ALL(c):[c e unull <=> c e null]]
&
[ALL(c):[c e unull <=> c e null] => unull=null]
Iff-And, 11
13 unull=null => ALL(c):[c e unull <=> c e null]
Split, 12
Sufficient: For unull=null
14 ALL(c):[c e unull <=> c e null] => unull=null
Split, 12
'=>'
Prove: ALL(c):[c e unull => c e null]
Suppose...
15 x e unull
Premise
Apply definition of unull
16 x e unull <=>
EXIST(c):[c e null & x e c]
U Spec, 6
17 [x e unull => EXIST(c):[c e null & x e c]]
&
[EXIST(c):[c e null & x e c] => x e unull]
Iff-And, 16
18 x e unull => EXIST(c):[c e null & x e c]
Split, 17
19 EXIST(c):[c e null & x e c] => x e unull
Split, 17
20 EXIST(c):[c e null & x e c]
Detach, 18, 15
21 y e null & x e y
E Spec, 20
22 y e null
Split, 21
23 x e y
Split, 21
Apply definiton of null
24 ~y e null
U Spec, 3
25 ~y e null => x e null
Arb Cons, 22
26 x e null
Detach, 25, 24
As Required:
27 ALL(c):[c e unull => c e null]
4 Conclusion, 15
'<='
Prove: ALL(c):[c e null => c e unull]
Suppose...
28 x e null
Premise
Apply definition of null
29 ~x e null
U Spec, 3
30 ~x e null => x e unull
Arb Cons, 28
31 x e unull
Detach, 30, 29
As Required:
32 ALL(c):[c e null => c e unull]
4 Conclusion, 28
Joining results...
33 ALL(c):[[c e unull => c e null] & [c e null => c e unull]]
Join, 27, 32
34 ALL(c):[c e unull <=> c e null]
Iff-And, 33
As Required:
35 unull=null
Detach, 14, 34
As Required:
36 ALL(null):ALL(unull):[Set(null)
& ALL(a):~a e null
&
ALL(a):[a e null =>
Set(a)]
&
Set(unull) & ALL(b):[b e unull <=>
EXIST(c):[c e null & b e c]]
=>
unull=null]
4 Conclusion, 1